摘要 最近的进展凸显了当前量子系统的局限性,特别是近期量子设备上可用的量子比特数量有限。这一限制极大地限制了可以利用量子计算机的应用范围。此外,随着可用量子比特的增加,计算复杂性呈指数增长,带来了额外的挑战。因此,迫切需要有效使用量子比特并减轻当前的限制和未来的复杂性。为了解决这个问题,现有的量子应用试图将经典系统和量子系统集成在一个混合框架中。在本文中,我们专注于量子深度学习,并介绍一种名为 co-TenQu 的协作经典量子架构。经典组件采用张量网络进行压缩和特征提取,使高维数据能够编码到具有有限量子比特的逻辑量子电路上。在量子方面,我们提出了一种基于量子态保真度的评估函数,通过双方之间的反馈回路迭代训练网络。co-TenQu 已在模拟器和 IBM-Q 平台上实现和评估。与最先进的方法相比,co-TenQu 在公平环境下将经典深度神经网络的性能提升了 41.72%。此外,它的性能比其他基于量子的方法高出 1.9 倍,在实现相似准确度的同时,使用的量子比特数却减少了 70.59%。
毫无疑问,高保真3D头发对于实现现实,艺术表达和沉浸在计算机图形中至关重要。现有的3D头发建模方法取得了令人印象深刻的性能,但实现高质量头发重建的挑战仍然存在:它们要么重新确定严格的捕获条件,因此很难实现实践应用,或者很大程度上依赖于学到的先前数据,并在图像中遵守细节细节。为了应对这些挑战,我们提出了Monohair,这是一个通用框架,以从单元视频中实现高保真的头发重建,而对环境没有具体要求。我们的方法将头发建模过程分为两个主要阶段:精确的外部重建和内部结构推断。使用基于补丁的多视图优化(PMVO)精心制作外部。此方法从策略性地收集并集成了从多个视图(独立于先前数据)产生高保真外部3D线图的头发插入。此地图
抽象合成数据生成有可能用稀缺数据影响应用程序和域。但是,在将这些数据用于诸如心理健康之类的敏感任务之前,我们需要了解其中如何代表不同的人口统计学。在我们的论文中,我们通过探索IT归因于不同种族和性别组合的各种压力来分析使用GPT-3生成综合数据的潜力,从而为未来的研究人员提供洞察力,以期利用LLMS使用LLM进行数据生成。使用GPT-3,我们通过控制种族,性别和时间范围(Covid-19)之前和时间范围,开发了3,120个有关抑郁症触发压力源的合成数据集的合成数据集。使用此数据集,我们将语义和词汇分析进行(1)确定每个人口组的主要应力源; (2)将我们的合成数据与人类生成的数据集进行比较。我们介绍了使用GPT-3生成查询以开发抑郁数据的程序,并进行分析以发现其分配给人群组的压力源的类型,这些压力源可用于测试抑郁数据合成数据生成的LLMS的局限性。我们的发现表明,合成数据模仿了各种人口统计学的主要抑郁压力源的某些人类生成的数据分布。
1印度科学学院计算与数据科学系,印度卡纳塔克邦,印度2个数据科学学院,印度科学教育与研究所,蒂鲁瓦南塔普拉姆,喀拉拉邦,印度,
心血管疾病(CVD)的高流行率要求可访问且具有成本效益的连续心脏监测工具。尽管心电图(ECG)是黄金标准,但连续监测仍然是一个挑战,导致探索光摄影学(PPG),这是一种有希望的但更基本的替代方案,可在消费者可穿戴设备中获得。这个概念最近引发了将PPG转化为ECG信号的兴趣。在这项工作中,我们介绍了区域限制扩散模型(RDDM),这是一种新型扩散模型,旨在捕获ECG的复杂时间动力学。传统的扩散模型,例如deno deno扩散概率模型(DDPM)在捕获整个信号中不可分犯的噪声过程中捕获这种细微差别时面临挑战。我们提出的RDDM通过企业进行了一个新颖的远期过程来克服这种限制,该过程有选择地将噪声添加到ECG信号中的QRS复合物等特定区域(ROI),以及一个反向过程,该过程散布了ROI和非ROI区域的差异。定量实验表明,RDDM可以在少于10个扩散步骤中从PPG产生高保真性ECG,从而使其非常有效且在计算上有效。此外,为了严格验证所产生的ECG信号的有用性,我们引入了心脏桥,这是针对各种心脏相关任务的全面评估基准,包括心率和血压估计,压力分类以及对心房颤动和糖尿病的检测。我们的详尽实验表明,RDDM在心脏座位上实现了最先进的表现。据我们所知,RDDM是生物信号域中交叉模式信号转换翻译的第一个扩散模型。据我们所知,RDDM是生物信号域中交叉模式信号转换翻译的第一个扩散模型。
今天,随着大型生成语言模型(LLM)的出现,现在可以模拟对采访问题的免费回答,例如传统上使用定性研究方法进行分析的问题。定性方法包括一系列广泛的技术,涉及对开放式访谈或以自然语言自由进行的对话进行手动分析。在这里,我们考虑使用定性分析方法对LLM产生的人工“硅参与者”是否可以进行有效的研究,以产生可以推广到真实人类种群的见解。我们分析中的关键是算法忠诚度,这是一个有效性概念捕获LLM生成的输出反映人类亚人群的信念和态度的程度。从定义上讲,高算法的忠诚度表明,LLMS引起的潜在信念可能会概括为真实的人类,而低算法的忠诚度则使此类研究无效。在这里,我们使用LLM来与“硅参与者”进行访谈,以一对一的人口统计学与一组人的参与者相匹配。使用基于框架的定性分析,我们展示了从人类和硅参与者获得的关键主题非常相似。但是,当我们分析访谈的结构和语气时,我们发现了更明显的差异。我们还发现了超准确性分歧的证据。我们得出的结论是,我们测试的LLM(GPT-3.5)没有足够的算法忠诚度,可以期望对其进行计算机研究,无法将其推广到真实的人类人群中。然而,人工智能的快速进步增加了算法忠诚度可能会改善的可能性。因此,我们强调了现在需要建立认知规范,围绕如何评估基于LLM的定性研究的有效性,尤其是关于确保代表异质生活经验的有效性。
为了进一步缓解从单视输入中恢复3D形状的歧义,我们遵循Yu等人。[84]以实现单眼,正常和分割提示,以促进训练过程。但是,由于这些图像在3D-Front [19]数据集中不可用,因此我们使用场景的3D扫描,对象的3D CAD模型以及摄像机在数据集中提供的内在和外在的pa-rameters进行调整。pix3d [69]数据集提供实例分割,但缺乏深度和正常图像。由于渲染是不可能的,因此我们将估计的深度和正常地图用作最先进的估计器的伪基真实[17]。请注意,在训练阶段的过程中,深度,正常和分割信息仅用于指导模型的学习过程,而在推理阶段则无需。这种调查表明,我们的模型仍然灵活且适用于各种情况。
由于光子损失而无法立即将摘要现有的经典光学网络基础架构用于量子网络应用。启用量子网络的第一步是将量子中继器集成到光网络中。但是,量子硬件中固有的费用和内在噪声强调了对有效的部署策略的需求,以优化量子折扣和记忆的分配。在本文中,我们提出了一个用于网络计划的综合框架,旨在有效地在现有基础架构上分配量子中继器,目的是在纠缠分布网络中最大化量子网络实用程序。我们将我们的框架应用于几个案例,包括哑铃网络拓扑的初步插图以及Surfnet和Esnet的现实情况。我们探讨了量子中继器中量子存储器多路复用的影响,以及记忆相干时间对量子网络实用程序的影响。我们进一步研究了不同公平假设对网络计划的影响,从而发现了它们对实时网络性能的影响。
在生理相关的水凝胶中的工程脉管网络是由于细胞– Bioink相互作用以及随后的水凝胶设备接口而成的。在这里,提出了一种新的细胞友好制造策略,以实现支持集成在微流体芯片中的共培养的灌注多凝胶脉管模型。该系统包含两个不同的水凝胶,以特定支持为血管模型选择的两种不同细胞类型的生长和增殖。首先,通过微流体设备内的两光聚合聚合(2pp),通道以明胶的墨水印刷。然后,注入人类肺纤维细胞纤维纤维水凝胶以包围印刷网络。最后,人体内皮细胞被播种在印刷通道内。打印参数和纤维纤维组合物进行了优化,以减少水凝胶肿胀,并确保可以用细胞介质灌注的稳定模型。以两个步骤制造水凝胶结构可确保没有细胞暴露于细胞毒性制造过程,同时仍获得高纤维打印。在这项工作中,在定制制造的灌注系统上成功证明了通过3D印刷的SCA旧和共培养模型的灌注来指导内皮细胞入侵的可能性。
摘要 - 由于缺乏可用的高分辨率雷达数据集,并且在获取现实世界中的数据方面缺乏可用的高分辨率雷达数据集和巨大的困难,因此摘要模拟已成为雷达算法开发和测试的重要工具。但是,由于现有的雷达仿真工具不容易易于访问,需要详细的网格输入并花费小时才能模拟,模拟雷达数据很具有挑战性。 为了解决这些问题,我们提出了Shenron,这是一个开源框架,它有效地仅使用LIDAR点云和相机图像来模拟高档MIMO雷达数据。 我们表明,使用Shenron,可以生成模拟数据,这些数据可用于与实际数据一样有效地评估算法。 此外,人们可以通过雷达的庞大参数空间进行快速迭代,以找到任何应用程序的最佳参数集,并在雷达感知和传感器融合方面具有很大的帮助研究。模拟雷达数据很具有挑战性。为了解决这些问题,我们提出了Shenron,这是一个开源框架,它有效地仅使用LIDAR点云和相机图像来模拟高档MIMO雷达数据。我们表明,使用Shenron,可以生成模拟数据,这些数据可用于与实际数据一样有效地评估算法。此外,人们可以通过雷达的庞大参数空间进行快速迭代,以找到任何应用程序的最佳参数集,并在雷达感知和传感器融合方面具有很大的帮助研究。