乳酸菌 (LAB) 是发酵牛奶所必需的,它能产生一系列抗菌化合物,尤其是细菌素,有助于延长乳制品的保质期。细菌素是核糖体合成的肽,具有广谱或窄谱抗菌活性,因此在食品保鲜方面很有前景。LAB 细菌素的分类很复杂,反映了不断发展的基因组学见解和生物合成机制。将细菌素整合到乳制品中的策略包括纯化形式、产生细菌素的 LAB 和含细菌素的发酵物,每种策略都有不同的优势和注意事项。优化发酵条件(包括时间、温度、pH 值和培养基)对于最大限度地提高细菌素产量至关重要。这种优化有助于提高发酵乳制品的质量和安全性,符合消费者对天然、加工程度最低的食品日益增长的偏好。此外,将细菌素与热处理和非热处理结合到隔离方法中有望增强食品的生物保护,同时减少对化学防腐剂的依赖。本综述强调了乳酸菌素作为传统食品防腐剂的天然有效替代品的潜力,并提供了其在乳制品保存中的应用和优化见解。
摘要 已发现香叶醇和芳樟醇在体外可有效对抗食源性微生物。 然而,由于它们的疏水性,很难在水分含量高的食物中均匀分散,导致活性急剧丧失。 该研究的目的是制备香叶醇或芳樟醇纳米乳液,并研究它们在肉类模拟培养基中对抗大肠杆菌 K12、无害李斯特菌和伦登假单胞菌的效果。 琼脂扩散试验表明香叶醇和芳樟醇对所有细菌都有有效的抗菌活性。 动态光散射表明香叶醇和芳樟醇纳米乳液的平均直径分别为 68.22±2.46 和 173.59±4.15 纳米。 杀灭试验结果表明,这两种纳米乳液都能显著减少大肠杆菌和无害李斯特菌的数量,大约 3 log CFU/ml。事实证明,Ps. lundensis 对两种纳米乳剂的抵抗力更强,细菌数量减少了约 1.2 log CFU/ml。总体而言,这项研究表明,含有香叶醇或芳樟醇的纳米乳剂是一种很有前途的抗菌系统,可以改善食品保鲜和食品安全。
摘要:保存食品和蔬菜产品是一种古老的做法,可以保持其风味、外观和质量。自古以来,用于干燥粮食的干燥机都是利用阳光直射、木柴、化石燃料和煤炭来干燥,从而释放碳。这些可用的方法既昂贵又不可靠,而且不卫生;因此,使用利用免费清洁能源的太阳能干燥机更有利于提高食品保鲜的价值。本研究的目的是研究不同类型的太阳能干燥机在干燥食品、蔬菜、海鲜等方面的最新发展。目前有许多研究探讨了温度、相对湿度、空气速度、湍流效应、太阳辐射和位置纬度等参数对太阳能干燥过程的影响。研究结果表明,太阳辐射和大气等气候条件对太阳能干燥机的干燥效率起着重要作用。相变材料在白天储存热能,在夜间释放热量。这一过程提高了热效率,减少了干燥期间的热量损失。一方面,集成太阳能电池板的混合式干燥机产生电力,用于直流鼓风机的运行,使干燥室内的热空气循环,从而更好地干燥。此外,还对使用不同的吸收板来提高传热速率、使用各种相变材料进行储热以及 CFD 模拟分析进行了严格的审查。关键词:CFD 模拟、食品、相变材料、太阳能干燥、效率
PLO-1 展示微生物学、动物学和化学学科的综合知识和技能 PLO-2 运用批判性、创造性和基于证据的思维来构思对微生物学、动物学和化学领域未来挑战的创新应对措施 PLO-3 有效地传达想法和信息以达到各种目的,并以积极和协作的方式做出贡献,以实现微生物学、动物学和化学领域的共同目标 PLO-4 培养微生物学(即微生物分离和鉴定技术、诊断技术和原理、食品保鲜技术、药物功效)、动物学(免疫学、生理学、水产养殖、生物技术)和化学(即有机、无机、物理、药物、分析化学和材料科学)等先进领域的研究相关技能 PLO-5 展示在与微生物学、动物学和化学相关的所选专业中开展协作活动和培养领导素质的能力。 PLO-6 展示使用 ICT 学习、评估、分析和呈现与微生物学、动物学和化学学科相关数据的技能。 PLO-7 培养与来自不同语言、文化、宗教和社会经济背景的团队合作的能力 PLO-8 识别和遵循与微生物学、动物学和化学相关工作各个方面的道德问题,并采取公正和真实的行动 PLO-9 通过运用在微生物学、动物学和化学学科中学到的基本原理,灌输导致可持续发展的社会责任感 PLO-10 培养通过自定进度和终身学习获得微生物学、动物学和化学学科技能的能力,以获得更好的就业机会并继续深造
拉贾斯坦邦政府科技部提交研发项目申请拉贾斯坦邦科技部财政支持的指南和格式 为鼓励应用型研究和向农村群众转让适用技术,该部非常重视研发活动。随函附上提交研发项目的指南,包括财政援助的“条款和条件”,以邀请大学/学院/邦政府研究部门/机构自治机构、教育机构,包括州立医学和工程学院和大学的教授/常任教员/科学家提交研究项目提案。邀请的研发项目大致如下: - 1. 应用科学技术提高该邦农村人口的生活水平。 2. 努力解决能源短缺问题、城乡能源消费模式、节约能源、利用太阳能照明、太阳能池、能源渗透和影响研究。3. 开发节能农具和设备、食品加工和储存方法、保湿、水果保鲜新方法、水果和农作物病虫害防治。4. 通过提高认识和传播新技术来发展农村技术。5. 研究氟中毒、营养性失明症和该州农村地区流行的其他常见疾病及其预防方法和知识传播。6. 研究常见动物疾病、预防方法和知识传播;改进奶牛和家禽养殖技术。7. 该州工业区的环境污染问题。8. 该州的饮用水问题及其克服措施。9. 开发低成本住房材料并在用户中传播信息。10. 减少妇女劳动的科学技术;日常活动中的健康危害并促进为他们创造就业机会的活动。11. 大型水库集水区森林砍伐的影响。
我们提供快速送货服务,可送货到中转站或法国本土的家中,送货费用为 15 欧元起,送货时间为 2 至 4 个工作日。您可以在周一至周五联系 Recyclivre 团队的 Elsa、Monica 和 Vincent 提出任何问题或寻求帮助,他们将在 24 小时内回复您。自 2008 年以来,已有超过 300 万客户信赖 Recyclivre,我们致力于让他们满意。交易通过我们的支付合作伙伴 Stripe 进行保护。在徒步旅行中补充能量。能量需求、食物保存方法(脱水、冻干、真空低温烹调……)、徒步旅行前和徒步旅行期间的烹饪、保持水分……在这本实用指南中,埃琳娜·巴蒂斯蒂 (Elena Battisti) 提供了所有建议,并提供了数十种在徒步旅行时享用健康、清淡和美味的食物的食谱。自古以来,无论是露营还是徒步旅行,午餐盒都是每天关注的问题。不再!有了这个小小的智能指南,烹饪将成为一种准备和享受的乐趣。这本书是一本介绍非典型和悠闲美食的独特绿色指南,它将让露营爱好者和新手都感到高兴。寻求四星级假期的度假者,弃权!露营者必备用具:保鲜或烹饪用的万能铝箔;不要忘记永远必备的瑞士军刀;选择炉灶、简约厨房电池...制作您的清单! 130 种环保、生态且……美味的食谱!鸡蛋该如何处理?围绕沙丁鱼罐头的 10 种食谱!点菜沙拉(=根据现有食材),美味,经济实惠,富有想象力,本书提供的所有食谱都使普通的沙拉变得更加美味。准备和烹饪:即兴制作一个披萨怎么样?篝火烤串?惊喜的膨化煎饼?如果可能的话,为什么不油炸呢!环境保护:当然,所有这一切都是按照自然规则进行的:尊重环境、某些地点禁止生火、遵守清洁规则......亲爱的读者,自 2023 年 10 月起生效的《达尔科斯法》保护图书行业并为您的订单制定了规范的运送费率。请参阅下表。
摘要:银纳米粒子 (AgNPs) 引领着纳米技术创新,将银的迷人特性与纳米工程的精确性相结合,从而彻底改变了材料科学。在 AgNP 起源的炼金术领域中出现了三种主要技术:化学、物理和生物合成。每种技术都具有控制尺寸、形状和可扩展性的独特魔力——这是实现纳米粒子实际应用专业知识所必需的关键因素。故事讲述了化学还原的精心协调、利用植物提取物进行绿色合成的环境敏感魅力以及物理技术的精确性。AgNPs 因其强大的抗菌特性而在医疗保健领域受到高度赞誉。这些小战士对细菌、真菌、寄生虫和病毒表现出广泛的攻击力。它们在对抗医院获得性和手术部位感染方面的关键意义受到高度赞扬,成为对抗抗生素耐药性这一挑战性问题的希望灯塔。除了具有杀死细菌的能力外,AgNPs 还具有促进组织再生和促进伤口愈合的作用。癌症领域也观察到了 AgNPs 的适应性。该评论记录了它们作为创新药物载体的作用,专门设计用于精确瞄准癌细胞,最大限度地减少对健康组织的伤害。此外,它还探讨了它们作为癌症治疗或能够破坏肿瘤生长的抗癌剂的潜力。在食品行业,AgNPs 被用于通过向包装材料和涂层注入杀菌特性来增强其耐用性。这可以改善食品安全措施并显着增加产品的储存时间,从而解决食品保鲜的关键问题。这项学术分析认识到 AgNPs 的创造和整合所带来的许多困难。这句话涉及对环境因素的评估和增强合成过程的努力。该评论预测了未来的学术追求,设想将提高 AgNPs 的实用性并将其重要性从新兴事物提升到科学和工业领域必不可少的事物的进展。此外,AgNPs 不仅是学术界感兴趣的主题,也是解决当代社会最紧迫的健康和保护问题的关键组成部分。本评论旨在探索 AgNP 合成的复杂过程,并强调其众多用途,特别关注其在医疗保健和食品行业日益增长的重要性。本评论邀请科学界探索 AgNPs 的广泛可能性,以充分了解和利用其潜力。
Nishanth M 摘要 自人类航天早期以来,太空食品技术取得了重大进步。过去,人们通常将食物冷冻干燥或辐照以延长其保质期并减少其体积,但这些方法会导致食物的味道和质地不佳。如今,太空食品通常包装在可复水的袋子中,可以在飞行中加热。然而,目前的太空食品技术仍然面临着诸多挑战,例如需要延长保质期、缺乏新鲜食材以及需要满足宇航员在长期任务期间的营养需求。未来,垂直农业和 3D 食品打印等食品生产技术的进步可能有助于改善太空食品的口感和营养价值,并使在航天器上种植新鲜农产品成为可能。此外,研究太空食物的心理影响对于保持宇航员的士气和生产力至关重要。本综述重点介绍太空食品及其技术的起源和历史、目前正在使用的方法和方法以及未来的进步和机遇。 关键词:太空食品;食品生产;食品包装;生命支持系统;冷冻干燥 引言 宇航员在太空失重状态下会吃一种特殊的食物,即“太空食品”。适当的饮食对于长期太空旅行中的社会心理至关重要,而摄入正确的营养素可以维持这种心理。膳食营养对宇航员的生命健康至关重要。太空食品应具有小巧、轻便、便于携带、能够抵御辐射、振动和低压等环境变量的有害影响等特点。太空食品在成分、储存、营养成分和食用方式方面与普通食品不同。太空环境会带来许多生理变化,如骨质流失、肌肉质量下降、免疫功能下降、肠道转运时间减慢、肠道通透性降低等,这些变化可能会影响食物的吸收。为宇航员提供足够的太空飞行食物和营养,是保证他们健康的关键。然而,在太空旅行过程中,航天员的膳食摄入可能经常不足,导致其营养状况明显下降,并引发或加剧失重环境下对人体健康的生理变化。因此,航天食品需要不断改进。太空食品的开发应遵循两个目标:一是满足航天员生存所需的生理需求;二是满足航天员在长期、艰苦的太空任务中对心理健康和享受的需求。科学技术的进步大大增加了太空食物的数量和质量。太空饮食和地球饮食之间唯一的解剖学区别就是这些。今天,宇航员可以吃一周的完全不同的美食。美国宇航员在太空中沉迷于自己的快餐文化,他们吃汉堡包、沙拉、香肠馅饼、甜点,甚至感恩节吃火鸡。国际空间站上的俄罗斯机组人员可以享用一份有 300 多种选择的菜单,每天四餐,每餐都有各种选择,包括干肉、西兰花和奶酪、冻梭子鱼猪肉、杏仁烤土豆等。日本料理在日本占主导地位,包括寿司、面条、纳豆饭、水果、咖喱牛排、海鲜、炖猪肉等。如今,宇航员可以选择的中国菜系多达 100 多种,包括鱼香肉丝、宫保鸡丁、莲子粥、蒸牛肉、粽子、八宝饭、凉茶等等。食品加工和保鲜技术的进步,促成了如此丰富多样的饮食。(Jiang et al 2019)[14] 。