指标 累计总数 接受教育、赋权和培训的社区级可信信使数量 3,291 为推广疫苗而开发和传播的传播产品数量 11,060 举办或支持的活动数量 1,553 活动参与者数量 476,056 推广疫苗接种的传播活动数量 272 通过传播活动覆盖的估计人数 15,557,832 为推广疫苗而建立的伙伴关系数量 524 与疫苗管理者建立的伙伴关系数量,以增加疫苗接种机会 109 建立的新疫苗接种点数量 2,449 接种新冠疫苗的人数 10,969 接种流感疫苗的人数 2,085
事实:错误。没有证据表明 COVID-19 疫苗可以改变你的 DNA。mRNA(信使 RNA)疫苗将 COVID-19 mRNA(遗传物质)引入您体内的细胞,以帮助教会您的免疫系统如何识别 COV ID-19 并保护您免受其侵害。但这种 mRNA 永远不会与您的 DNA 相互作用或改变您的 DNA,因为它永远不会进入细胞核 - 您的 DNA 所在的地方。此外,COVID-19 mRNA 疫苗仅指导您的细胞如何识别 COVID-19 病毒的一小部分。疫苗不使用整个病毒。这意味着 COVID-19 疫苗不会导致您感染 COVID-19。mRNA 也会在您的细胞中迅速分解,因此它不会在您的体内停留很长时间。
本宣传单未列出的效果。请参阅第 4 节。 本宣传单包含的内容 1. Spikevax XBB.1.5 是什么以及它用于什么 2. 接种 Spikevax XBB.1.5 前您需要知道什么 3. 如何接种 Spikevax XBB.1.5 4. 可能的副作用 5. 如何储存 Spikevax XBB.1.5 6. 包装内容和其他信息 1. Spikevax XBB.1.5 是什么以及它用于什么 Spikevax XBB.1.5 是一种用于预防 SARS-CoV-2 引起的 COVID-19 的疫苗。该疫苗适用于成人和 6 个月及以上的儿童。疫苗中的活性物质是编码 SARS-CoV-2 刺突蛋白的核糖核酸 (RNA)。RNA 嵌入 SM-102 脂质纳米颗粒中。 Spikevax XBB.1.5 含有信使核糖核酸 (mRNA) (andusomeran),可编码病毒 XBB.1.5 毒株的刺突蛋白。由于 Spikevax XBB.1.5 不含病毒,因此不会让您感染 COVID-19。疫苗的作用原理 Spikevax XBB.1.5 可刺激人体的天然防御系统(免疫系统)。该疫苗的作用原理是使人体产生针对引起 COVID-19 的病毒的保护作用(抗体)。Spikevax XBB.1.5 使用一种称为信使核糖核酸 (mRNA) 的物质来携带指令,人体细胞可使用这些指令制造病毒上也存在的刺突蛋白。然后,细胞会产生针对刺突蛋白的抗体,帮助抵抗病毒。这将有助于保护您免受 COVID-19 的侵害。 2. 接种 Spikevax XBB.1.5 前需要了解的情况 如果出现以下情况,请勿接种疫苗 - 您对该疫苗的活性物质或任何其他成分过敏(列于第 6 节)。 警告和注意事项 如果出现以下情况,请在接种 Spikevax XBB.1.5 前咨询您的医生、药剂师或护士: - 您以前在注射任何其他疫苗后或接种 Spikevax 后出现过严重的、危及生命的过敏反应
• 无义突变:它们在 DNA 序列的某个点(根据突变而变化)包含三个碱基(密码子),发出信号来中断 CFTR 蛋白的合成:它们也称为“停止”突变。由此产生的蛋白质被截断和去除•错义突变:导致 DNA 序列中碱基三联体交换的突变:这意味着在蛋白质链的某个点上,一个氨基酸被另一个氨基酸取代。这种替换不会去除蛋白质,但可以决定或多或少严重的功能改变,这取决于链的点和被替换的氨基酸的类型。在意大利,它们约占所有突变的 7%:最常见的(约 5%)是 N1303K。 • 移码突变:非常罕见(并且通常很难用当前技术识别),通过插入(添加)或删除(截断)大段 DNA 导致基因序列的重大改变,从而大大阻止 CFTR 蛋白的合成。在意大利,总体而言,它们所占比例不到 0.5%:例如 541delC 或 3667ins4(“del”或“ins”代表删除或插入)。 • 剪接突变:“剪接”是将基因的“编码”DNA 部分(称为“外显子”)中包含的遗传信息转移到信使 RNA 的机制,信使 RNA 负责控制蛋白质的合成。剪接机制受基因的“非编码”部分(称为“内含子”)的调控。与其他突变不同,剪接突变位于内含子中,而不是外显子中。这些突变会破坏代码的传输,通过或多或少地阻止正常 CFTR 蛋白的合成(具体取决于突变的类型):本质上,这些突变会导致一定比例的正常 CFTR 和一定比例的改变或缺失的 CFTR。患有这些突变的人的临床情况取决于在合成过程中保留了多少正常 CFTR
北约动态信使 (DYMS) 22 是联合部队发展作战实验演习 [1],北约作战团体与工业和学术界的合作伙伴合作,通过广泛的实验促进海上无人系统 (MUS) 与北约作战的作战整合 [2]。在 DYMS-22 中,现场多领域演习将于 9 月 23 日至 30 日在特洛伊半岛附近的葡萄牙北大西洋演习区进行。DYMS-22 中的一个集团专注于在海军水雷战 (NMW) 任务中使用创新的 MUS 技术进行实验。NWM 集团将执行一系列水雷对抗 (MCM) 任务,探索完全自主任务执行和调查的优缺点
成人发病的静止病(AOSD)是一种罕见的自发性疾病,没有明确的病因,主要影响年轻人。> 80岁以上的新发病很常见。我们介绍了一名拥有AOSD的82岁妇女的案例,该女性在接受信使核糖核酸(mRNA)冠状病毒疾病2019(COVID-19)疫苗后发展。covid-19疫苗会导致细胞因子,全身性炎症和某些免疫介导的不良事件的过量产生,例如类风湿关节炎,全身性红斑狼疮,皮肤肌炎,血管炎,血管炎,血管炎和rhemumagia rheumamatica excinate efacecation。疫苗接种后的少数AOSD病例也报道了中位年龄为40年代。但是,即使在老年人中,与COVID-19的AOSD甚至可以发展。
随着近30年来电子信息的飞速发展,基于电磁的技术成果被广泛应用于人类生产生活的各个领域,电磁辐射(EMR)已成为现代文明中重要的新型污染源。EMR的生物学效应已引起全世界的广泛关注,其中EMR与人体器官特别是脑的可能相互作用是目前最为关注的。许多研究表明,神经系统是对EMR敏感的重要靶器官系统。近年来,越来越多的研究集中于EMR的神经生物学效应,包括神经递质的代谢和转运。神经递质作为突触传递的信使,在认知和情绪行为中起着至关重要的作用。本文总结了EMR对脑内神经递质代谢和受体的影响。
本指南包括针对合成或天然衍生的单链或双链 ONT 的建议,这些 ONT 具有天然或经过修饰的主链或核苷结构,可增加或减少蛋白质的表达和/或功能。所包括的寡核苷酸的例子有反义寡核苷酸、小干扰 RNA、microRNA、转移 RNA、诱饵和适体。免疫刺激性寡核苷酸(例如,通过 Toll 样受体起作用的 CpG 基序)和 CBER 监管产品(例如,DNA/RNA 疫苗、病毒递送的 ONT、信使 RNA 和用于基因编辑的 RNA)不包括在内。如果寡核苷酸本身属于本指南的范围,则包括与其他类型分子(例如,糖类、脂质、肽、抗体)结合的寡核苷酸。
北约动态信使 (DYMS) 22 是联合部队发展作战实验演习 [1],北约作战团体与工业和学术界的合作伙伴合作,通过广泛的实验促进海上无人系统 (MUS) 与北约作战的作战整合 [2]。在 DYMS-22 中,现场多领域演习将于 9 月 23 日至 30 日在特洛伊半岛附近的葡萄牙北大西洋演习区进行。DYMS-22 中的一个集团专注于在海军水雷战 (NMW) 任务中使用创新的 MUS 技术进行实验。NWM 集团将执行一系列水雷对抗 (MCM) 任务,探索完全自主任务执行和调查的优缺点