如图 2.1 (b) 所示,差分增益 (A d ) 定义为输出电压 (图 2.1 (a) 中的 V out ) 除以差分输入电压 (图 2.1 (b) 中的 Vi1 和 Vi2 )。除此之外,共模增益 (A CM ) 定义为输出电压 (图 2.1 (a) 中的 V out ) 除以共模输入电压 (图 2.1 (b) 中的 ViCM )。差分增益表示没有噪声扰动的理想信号增益。共模增益表示共模噪声对输出电压的贡献。
摘要 本文介绍了一种采用 65 nm CMOS 工艺的四路电流合成 Ka 波段功率放大器 (PA)。采用基于对称传输线的四路电流合成器和输出变压器,将高负载阻抗 (4* 푍 퐿 ) 传输到每个功率单元所需的 푍 표푝푡。此外,还优化了级间/输入灵活匹配变压器和功率分配器以提高性能。基于上述方法,功率放大器在 35GHz 时的小信号增益约为 24.12 dB,饱和输出功率为 21.56 dBm,峰值功率附加效率为 27.3%。关键词:四路电流合成、功率放大器、传输线合成器、柔性变压器 分类:微波和毫米波器件、电路和硬件
摘要 - 浮动门(FG)细胞作为控制在thranddiode配置中操作的有机薄膜晶体管(TFTS)的电路级别方法。充电和排放。使用不超过4 V的编程电压,实现了阈值电压的系统调整到-0.5和2.6 V之间的值。该概念的多功能性是通过使用有机-TFT的FG细胞作为被动式直流体中可编程阈值溶剂的转置和二极管载荷式逆变器,并在透明,透明的透明塑料底物上制造的。直接菌显示出频率响应,改善3-DB点和涟漪降低。具有可编程FG-TransDiode负载的逆变器比传统的二极管逆变器具有更大的小信号增益,更大的输出 - 电压摆动和更大的噪声余量。
参考文献中引入的设计。1需要-20 dB的最大回报损失,可以通过使用纯CPW线结构在下部阻抗侧使用1- µm间隙宽度来实现。在许多研究设施中,通过光刻工具以高收率制造这样的CPW线是不可行的。相比之下,我们对克洛普芬斯坦锥度的设计需要在较低阻抗侧的间隙宽度为3 µm,这是可以使用常用的光刻光刻工具可以很容易地实现的。另一方面,klopfenstein锥的-10 dB最大回报损失导致-0.45 dB的最小插入损失。当信号通过Klopfenstein锥度两次时,这种插入损失将使信号增益降低-0.9 dB,与放大器的标称15至20 dB增益相比,这是可以忽略的。
纳米级金属氧化物场效应晶体管 (MOSFET) 电路设计受功耗约束驱动。当晶体管在弱反型区工作时,功耗最小。1 在没有适合进行封底计算的模型的情况下,设计人员通常使用艰巨的电路模拟来探索设计空间。过度依赖电路模拟器可能会带来问题,可能会诱使没有经验的设计人员在没有了解适当优化的电路中的基本权衡的情况下深入模拟。1996 年,Silveira 等人提出了一种强大的跨导到漏极电流 (gm /ID) 技术,帮助设计人员快速确定晶体管的尺寸。1 所谓的“gm /ID 设计方法”最初是为了计算小信号增益和带宽等参数而开发的,1 后来扩展到噪声。2 在 Ou 2 于 2011 年发表的公式中,偏置相关热噪声系数 (γ) 和
摘要:介绍了顺序负载调制平衡放大器(SLMBA)的基本理论,分析了其有源负载调制的工作原理。为了进一步提高SLMBA的性能,提出了一种有别于传统耦合器设计的耦合器与功率放大器(PA)联合设计的方法。该耦合器-PA联合设计方法根据SLMBA的回退点和饱和点,可以使耦合器和三通PA的工作状态更接近实际情况,提高了SLMBA的整体性能。然后通过预设的输出功率回退(OBO)10 dB确定控制PA与平衡PA的最大输出功率比,通过平衡PA的负载调制阻抗走线确定相位补偿线。为了验证所提方法,设计了工作在1.5~2.7 GHz(57%相对带宽)的SLMBA。版图仿真结果表明该器件饱和输出功率达到40.7~43.7 dBm,小信号增益为9.7~12.4 dB,饱和点和10 dB OBO点的漏极效率分别为52.7%~73.7%和44.9%~59.2%。
在由SARS-COV-2触发的全局COVID-19大流行之后,需要快速,特定和具有成本效益的护理诊断解决方案的需求仍然是至关重要的。尽管Covid-19不再是公共卫生紧急情况,但该疾病仍会构成全球威胁,导致死亡,并且随着新变体的风险而发生变化,导致案件和死亡引起新的激增。在这里,我们迫切需要SARS-COV-2的快速,成本效益和护理诊断解决方案。我们提出了一个基于多重DNA的传感平台,该平台利用喷墨打印的纳米结构金电极和一个喷墨打印的无电池无电池近场通信(NFC)电位,用于对两个SARS-COV-2基因,ORF1AB和N Gene的同时定量检测。基于RNA-DNA夹层结构的形成的检测策略导致高度特异性的电化学输出。喷墨打印的纳米结构金电极提供了较大的表面积,可有效结合并提高灵敏度。喷墨打印的无电池NFC PotentioStat可以通过智能手机应用程序进行快速测量和实时数据分析,从而使平台可访问和便携。具有速度(5分钟),简单性,灵敏度(低PM范围,〜450%信号增益)和成本效益的优势,提出的平台是护理点诊断和高通量分析的有希望的替代方案,可补充COVID-19的诊断工具基。