生产和运输混凝土与较大的环境足迹结合在一起。制造混凝土所需的材料之一是水泥,它被认为是生产最污染的材料之一。转移到地球材料将大大降低环境影响以及生产成本。此外,提出的解决方案的可逆性可重复使用基本材料。将通过聚合物砂复合材料来确定并最终解决更具体的问题。
摘要 — 了解好奇心背后的神经生理机制并因此能够识别一个人的好奇心水平,将为神经科学、心理学和计算机科学等众多领域的研究人员和设计师提供有用信息。揭示好奇心的神经相关性的第一步是在好奇状态下收集神经生理信号,以便开发信号处理和机器学习 (ML) 工具来识别好奇状态和非好奇状态。因此,我们进行了一项实验,其中我们使用脑电图 (EEG) 测量参与者在被诱导进入好奇状态时的大脑活动,使用琐事问答链。我们使用两种 ML 算法,即滤波器组公共空间模式 (FBCSP) 与线性判别算法 (LDA) 相结合,以及滤波器组切线空间分类器 (FBTSC),以将好奇的 EEG 信号与非好奇的 EEG 信号进行分类。总体结果表明,两种算法在 3 到 5 秒的时间窗口内均获得了更好的性能,表明最佳时间窗口长度为 4 秒(FBTSC 的分类准确率为 63.09%,FBCSP+LDA 的分类准确率为 60.93%)可用于基于 EEG 信号的好奇心状态估计。索引术语 — 好奇心 - 心理状态 - 学习 - 脑电图 - 被动脑机接口
以下论文涉及将脑电图 (EEG) 与机械臂形式的执行器相结合的系统的开发。EEG 是一种通过电极测量大脑活动的方法,经常用于脑机交互领域。除了开发 3D 打印机械臂的设计和控制外,我们的工作还包括通过蓝牙在 EEG 测量设备和执行器之间建立数据传输,以及实时对 EEG 信号进行分类和分析。该系统的设计使得机械臂在用户高度集中时握紧拳头,在注意力水平较低时放松为张开的手掌。结果显示了一个工作系统,它通过根据用户的注意力水平测量和正确处理 EEG 信号来控制机械臂。该系统对假肢和脑机交互领域的进一步研究很有用。系统准确性的一个可能改进是使用两个以上的电极来测量大脑活动,并减少由于脑电图信号对肌肉活动的敏感性而产生的噪音。
基于远程生理信号的抽象心率测量可能会大大促进日常生活中的健康监测。但是,生理信号的基础标签很昂贵且难以收集。在本文中,我们提出了一个对比的自我监督学习框架,以通过在预训练阶段利用没有地面真相标签的周期性信号先验来提取歧视性远程生理特征。具体来说,构建排名损失和对比度学习损失,以通过重新采样视频剪辑来提取知识。此外,数据增强和集合学习策略旨在微调预训练的模型并融合结果以改善心率测量。我们的最终解决方案实现了3𝑟𝑑基于远程远程生理信号传感(REPSS)挑战的轨道1的位置。
摘要 — 在本文中,我们研究了使用脑电图 (EEG) 信号进行物体检测任务中图像解释过程中人类的决策信心。我们开发了一个从 14 名受试者获取的 EEG 数据集。采用五种流行的 EEG 特征,即差分熵 (DE)、功率谱密度 (PSD)、差分不对称 (DASM)、有理不对称 (RASM) 和不对称 (ASM),以及两个分类器,即支持向量机 (SVM) 和带快捷连接的深度神经网络 (DNNS),来测量物体检测任务中的决策信心。分类结果表明,对于五个决策信心水平,带有 DNNS 模型的 DE 特征实现了 47.36% 的最佳准确率和 43.5% 的 F1 分数。对于极端信心水平,识别准确率达到 83.98%,平均 F1 分数为 80.93%。我们还发现,delta 波段的表现优于其他四个波段,并且前额叶区域和顶叶区域可能是代表物体检测任务中的决策信心的敏感大脑区域。