卷积神经网络(CNNS),是最重要的深度学习网络,用于构想者视觉,已进行了一系列的发展和改进,以进行与图像相关的任务,例如对象识别,图像分类,语义细分等。然而,在自然语言处理(NLP)领域,基于注意力的新网络变速器对机器翻译产生了深远的影响,随后导致了基于注意的计算机视觉模型的繁荣。具有关注的最新模型已经显示出对计算机视觉任务的良好性能。例如,与当前的卷积神经网络的表现相比,自我注意力学会在不同位置的细分或单词之间的关系。受视觉转移(VIT)的启发,我们提出了一个简单的新型变压器体系结构模型,称为Flexible Transformer,该模型继承了基于注意力的架构的属性,并且对于任意大小的输入而言是灵活的。除了自我注意事项外,VIT中的输入没有预处理,例如调整大小或裁剪,但在不改变它们的情况下保持完整,这可能导致信息失真或信息丢失。在本文中,我们想介绍一个满足这些要求的新颖而简单的体系结构。与艺术品相比,我们的模型流程输入具有任意图像大小的输入,而没有任何预处理和预处理成本。此外,实验的结果表明,尽管资源有限,该模型仍可以以很高的精度提供良好的结果。,即使灵活变压器的结果不如视觉变压器的结果准确,但它们显示了具有可变大小图像的图像分类任务中具有高性能的模型的潜力。研究的重要性为处理深度学习任务中的原始图像打开了可能性。基于原始输入,如果对拟议的模型进行了优化并在大型数据集上进行了进一步培训,则可以获得良好准确性的可靠结果。
黑洞是量子引力中令人着迷的物体。从相当平凡的初始条件(如坍缩的恒星)开始,大自然能够产生一种将短距离涨落放大到宏观尺寸的几何形状。这种时空的“拉伸”绕过了高能物理与低能物理的威尔逊解耦,使普朗克尺度动力学的深层问题与低能(思想)实验相关。1 事实上,在一对非凡的经典论文 [ 1 , 2 ] 中,斯蒂芬霍金首先论证了这种涨落的拉伸会导致黑洞蒸发,其次认为蒸发过程不符合纯态总是演化为其他纯态的量子力学原理。这个结论通常被称为黑洞信息问题,在霍金发表论文后的近 40 年里,它引发了大量的研究。信息真的丢失了吗?如果没有,那么阻止信息丢失的普朗克干涉的本质是什么?这些问题已经取得了重大进展,但最近的研究强调了我们仍然没有令人满意的答案。这些讲座的目的首先是尽可能多地介绍用于制定和分析这些问题的技术,其次是概述导致最近该主题研究激增的新悖论。我还将讨论一些为解决悖论而提出的建议,但我绝不会进行全面的回顾;我一直尽力将教学法置于完整性之上。当然,在目前如此混乱的领域,我对应该包括哪些材料的看法会有些特殊。一般来说,我试图给出或至少概述事物的“真实”论据。当主题的基础像这里一样受到质疑时,我认为应该尽可能避免草率的逻辑。偶尔,材料的某些细节是新的,但我不会试图引起人们对其的注意,因为这会很尴尬和乏味,而且无论如何,我的“改进”大多是表面的。
理论物理学与人类活动的所有领域一样,都受到发展时期流行的思想流派的影响。因此,我们所知道的物理理论不一定是解释实验数据的最简单的理论,而是最自然地遵循当时的先前理论的理论。广义相对论和量子理论都是建立在经典力学的基础上的——它们分别在非常大和非常小的受限范围内取得了令人印象深刻的成功,但从根本上来说它们是不相容的,正如黑洞信息丢失悖论 [1,2] 等悖论所反映的那样。这提出了一个有趣的问题:如果我们假设没有物理先验知识,量子物理定律和其他更普遍的物理理论是否是解释实验数据的最自然的定律?虽然这个问题在不久的将来可能不会得到解答,但人工智能的最新进展使我们朝这个方向迈出了第一步。在这里,我们研究神经网络是否可用于从实验数据中发现物理概念。以前的工作。 — 使用机器帮助发现实验数据背后的物理定律这一目标已经在多个方面得到追求(有关更详细的概述,请参阅补充材料(SM)[3],有关最新评论,请参阅参考文献[30 – 33])。许多早期工作集中于寻找描述给定数据集的数学表达式(例如,参见参考文献[34 – 36])。例如,在参考文献[35]中,一种算法通过在给定输入变量的数学表达式空间中搜索,恢复了简单机械系统(如双摆)的运动定律。最近,在从实验数据中提取动力学方程方面取得了重大进展[37 – 45]。这些方法非常实用,并已成功应用于复杂的物理系统,但需要对感兴趣的系统有先验知识,例如以知道系统的基本结构是什么的形式。
简洁论证 [Kil92、Mic94] 允许证明者说服验证者语句 x 属于语言 L,并且通信长度短于对应关系的见证长度。简洁论证已成为现代密码学的基石,并推动了许多现实世界应用的发展,如可验证计算和匿名加密货币。近年来,基于各种密码学假设,简洁论证的构造呈爆炸式增长。然而,量子计算的出现对这些进步构成了重大威胁。一方面,Shor 算法 [Sho94] 迫使我们过渡到基于后量子假设的密码系统,例如带错学习 (LWE) 问题的难度 [Reg05]。另一方面,由于量子信息的根本性质不同,一些已知的证明密码协议安全性的技术不再适用于后量子时代。最值得注意的是倒带技术,这种技术在简洁论证的安全性证明中无处不在。在倒带证明中,有人认为,如果对手在一次随机挑战中以足够高的概率取得成功,那么他一定能在多次挑战中取得成功。这种经典的直观想法在量子环境中不成立,因为测量对手对一次挑战的反应会导致不可逆转的信息丢失,这可能使其无法用于回答其他挑战。一类重要的简洁论证是基于 [ BCC + 16 , BBB + 18 ] 递归折叠技术的交互式协议,在文献中也称为 Bulletproofs 。利用密码方案的代数性质,类似 Bulletproofs 的协议可以实现比基于 PCP 和 IOP 的简洁论证 [ Kil92 , BCS16 ] 小得多的证明大小,同时保留公共币设置的好处。然而,与基于 PCP 和 IOP 的论证不同,原始的 Bulletproofs 构造不是后量子安全的,而是基于离散对数问题的难度。这激发了一系列旨在设计“后量子 Bulletproofs” [BLNS20、AL21、ACK21、BCS21] 的工作。虽然这些工作不依赖于量子不安全的加密假设,但它们对后量子安全性的分析只是启发式的,因为健全性只能在面对经典对手时才能体现出来。受此情况的启发,我们提出以下问题:
电子断层扫描作为一种重要的三维成像方法,为从纳米到原子尺度探测材料的三维结构提供了一种强有力的方法。然而,作为一个重大挑战,缺楔引起的信息丢失和伪影极大地阻碍了我们获得高保真度的纳米物体的三维结构。从数学上讲,断层扫描逆问题定义不明确,因为解是不唯一的。传统方法,如加权反投影 (WBP) 和同时代数重建技术 (SART) [1],由于倾斜范围有限,缺乏恢复未获取的投影信息的能力;因此,使用这些方法重建的断层图像会失真,并受到伸长、条纹和鬼尾伪影的污染。总方差最小化 (TVM) [2] 结合了迭代重建和正则化,已被开发用于恢复丢失的信息并减少由缺失楔形引起的伪影。然而,TVM 的一个缺点是它不是无参数的并且计算成本高昂。除此之外,TVM 或任何广义 TVM 方法的真正问题是它们被绑定到一个正则化,该正则化会促进对解决方案的一个先验约束,而该解决方案可能适合也可能不适合感兴趣的对象。在本文中,我们应用机器学习,特别是深度学习来解决这个问题。图1 显示,通过在正弦图和断层图域中分别加入两个修复生成对抗网络 (GAN) 模型可以有效地恢复未获取的投影信息 [3]。我们首先设计了一个基于生成对抗网络 (GAN) 中的残差-残差密集块的正弦图填充模型。然后,使用 U-net 结构生成对抗网络来减少残差伪影。联合深度学习模型对于缺失角度高达 45 度的缺失楔形正弦图实现了卓越的断层扫描重建质量。该模型性能的提高源于将问题分解为两个独立的域。在每个域中,都可以有效地学习基于训练过的“先验”的独特解决方案。此外,与基于正则化的方法相比,这种深度学习方法是一种没有任何超参数的端到端方法。其性能与先验知识或人类操作员设置超参数的经验无关。
退化现象。使用去噪技术去除图像中的噪声和使用去模糊技术去除图像中的模糊都属于图像恢复。 • 彩色图像处理:这基本上有两种类型——全彩色和伪彩色处理。在前一种情况下,图像是通过全彩色传感器(如彩色扫描仪)捕获的。全彩色处理进一步分为两类:在第一类中,每个组件被单独处理,然后形成复合处理后的彩色图像;在第二类中,我们直接操作彩色像素。伪彩色或假彩色处理涉及根据规定的标准将颜色分配给特定的灰度值或值范围。强度切片和颜色编码是伪彩色处理的技术。颜色用于图像处理是因为人类能够区分不同色调和强度与不同灰度。此外,图像中的颜色使得从场景中提取和识别物体变得容易。 • 图像压缩:这意味着通过消除重复数据来减少表达数字图像所需的信息量。压缩是为了减少图像的存储要求或减少传输期间的带宽要求。压缩是在存储或传输图像之前完成的。压缩有两种类型——有损和无损。在无损压缩中,图像的压缩方式不会丢失任何信息。但是在有损压缩中,为了实现高水平的压缩,可以接受一定量的信息丢失。前者适用于图像存档,例如存储医疗或法律记录,而后者适用于视频会议、传真传输和广播电视。无损压缩技术包括可变长度编码、算术编码、霍夫曼编码、位平面编码、LZW 编码、游程编码和无损预测编码。有损压缩技术包括有损预测编码、小波编码和变换编码。• 形态图像处理:它是一种绘制图像中可用于表示和描述图像形态、大小和形状的部分的技术。常见的形态学算子有膨胀、腐蚀、闭运算和开运算。形态学图像处理的主要应用包括边界提取、区域填充、凸包、骨架、细化、连通分量提取、加厚和剪枝。• 图像分割:这是使用自动和半自动方法从图像中提取所需区域的过程。分割方法大致分为边缘检测方法、基于区域的方法(包括阈值和区域增长方法)、分类方法(包括 K 近邻、最大似然法)、聚类方法(K 均值、模糊 C 均值、期望最大化方法)和分水岭分割 [3]。• 表示和描述:分割过程的结果是像素形式的原始数据,需要进一步压缩才能表示和描述,以便进行额外的计算机处理。区域可以用其外部特征(如边界)来表示
成簇的规律间隔短回文重复序列 (CRISPR) - CRISPR 相关蛋白 (Cas) 技术已应用于植物育种,主要用于改良单个或多个性状的基因 1 – 4 。本文我们表明,这项技术还可用于重组植物染色体。利用来自金黄色葡萄球菌 5 的 Cas9 核酸酶,我们能够在拟南芥中诱导异源染色体之间 Mbp 范围内的相互易位。值得注意的是,在没有经典的非同源末端连接途径的情况下,易位频率大约高出五倍。利用 Cas9 核酸酶的卵细胞特异性表达和连续的批量筛选,我们能够分离可遗传事件并建立易位纯合的品系,单个品系的频率高达 2.5%。通过分子和细胞学分析,我们证实了在拟南芥 1 号和 2 号染色体之间以及 1 号和 5 号染色体之间获得的染色体臂交换是保守的和相互的。诱导染色体易位可以有针对性地模拟基因组进化或染色体修改,固定或打破不同染色体上性状之间的遗传连锁。植物基因组的受控重组有可能改变植物育种。鉴于养活快速增长的人口的挑战以及气候变化对农业的影响,对新作物品种的需求日益增加。随着传统育种已达到极限,使用基因组编辑工具对作物进行理想性状改造正成为主要关注点 6 。应用 CRISPR-Cas 系统定向诱导位点特异性双链断裂 (DSB) 使得基因编辑既可用于植物基础研究,也可用于农业性状的产生和改良 7 。在包括植物在内的多细胞真核生物中,DSB 的修复主要由两种途径介导,非同源末端连接 (NHEJ) 和同源重组 8 。通过易错的 NHEJ 进行的修复通常与断裂位点处的序列信息丢失有关,而同源重组主要导致无错修复 9 。在植物中,NHEJ 是体细胞组织中普遍的修复途径。NHEJ 可进一步细分为经典 NHEJ (cNHEJ) 和替代 NHEJ (aNHEJ) 途径 10 。在 cNHEJ 的情况下,断端直接重新连接,有时会导致断裂位点处的小插入或缺失 (indel)。aNHEJ 利用靠近断裂位点的微同源性并依赖于聚合酶 theta,导致与插入部分相关的微同源性之间的序列信息缺失 11,12 。一次诱导多个 DSB 可以通过 NHEJ 将不相关的断裂末端连接起来,从而导致基因组中复杂的重排。
自从约翰·麦卡锡和马文·明斯基在麻省理工学院成立人工智能实验室,首次开展人工智能 (AI) 协调研究以来,已经过去了 60 多年。从那时起,人工智能已经发展成为一种应用广泛的工具,使我们能够从根本上重新思考如何整合、分析和使用数据进行决策。越来越多的研究证明,人工智能可以为金融行业带来诸多优势:提供新的风险管理和合规方法、降低运营成本、提高金融包容性、实现超个性化以及自动化任务,从而提高运营效率。然而,金融服务提供商在日常任务中全面采用基于人工智能的系统的速度很慢,部分原因是大型遗留 IT 环境可能无法适应高级分析。在金融领域更广泛采用人工智能的另一个高度相关的障碍与可解释性概念有关。也就是说,人工智能解决方案通常被称为“黑匣子”,因为通常很难追踪算法得出解决方案所采取的步骤。这种缺乏透明度和可解释性的问题对于政策制定者和监管者来说是一个关键点,他们努力推广和验证部署后稳健且相对稳定的模型。例如,在信用评分方面,监管部门需要确保决策公平公正。此外,GDPR 提供了解释权,使用户能够要求解释影响他们的决策过程。因此,创新技术的采用必须以负责任、值得信赖的方式进行,特别是在影响整体经济的金融领域。除了对可解释性的基本需求之外,金融部门还面临着越来越复杂的对手,他们有能力实施大规模数据泄露、数据篡改和机密信息丢失。这同样需要能够处理噪音并在对抗性数据破坏的情况下持续存在的稳健而稳定的方法。在此背景下,本研究主题旨在纳入原创论文,提出用于全球或本地解释的创新方法,以及评估应用于金融问题集的基于人工智能的系统的公平性和稳健性。Hadji Misheva 等人的研究特别关注可解释性的受众依赖性,探讨了瑞士金融行业内的各个利益相关者如何看待可解释性,并深入讨论了当前 XAI 技术的潜力和局限性。这样的研究通过弥合文献中部署的可解释技术与行业需求之间的差距,为文献做出了重要贡献。Gramespacher 和 Posth 的研究对研究选择做出了另一项贡献,重点关注如何利用可解释的人工智能来优化回报目标函数,并着眼于信用评估的典型用例。作者特别指出,如果预测不准确导致成本严重不对称,则应使用准确度指标来代替经济目标函数。此外,所讨论的应用和结果证实了可解释人工智能的一个关键优势
量子计算机的探索正在如火如荼地展开。在过去十年中,量子计算的前沿领域已经从探索少量子比特设备扩展到开发可行的多量子比特处理器。超导 transmon 量子比特是当今时代的主角之一。通过和谐地结合应用工程与计算机科学和物理学的基础研究,基于 transmon 的量子处理器已经成熟到令人瞩目的水平。它们的应用包括研究物质的拓扑和非平衡状态,有人认为它们已经将我们带入了量子优势时代。然而,建造一台能够解决实际相关问题的量子计算机仍然是一个巨大的挑战。随着该领域以无拘无束的热情发展,我们是否全面了解潜伏的潜在危险的问题变得越来越紧迫。特别是,需要彻底弄清楚,在拥有 O (50) 量子比特的可行量子计算机的情况下,是否会出现与多量子比特性质相关的新的和迄今为止未考虑的障碍。例如,小型设备中量子门的高精度很难在大型处理器中获得。在硬件方面,大型量子计算机提出的独特要求已经催生了量子比特设计、控制和读出的新方法。本论文介绍了一种新颖的、不太实用的多量子比特处理器视角。具体来说,我们通过将局域化和量子混沌理论中的概念应用于多 transmon 阵列,将量子工程和多体物理学领域融合在一起。从多体的角度来看,transmon 架构是相互作用和无序非线性量子振荡器的合成系统。虽然 transmon 之间的一定程度的耦合对于执行基本门操作是必不可少的,但需要与无序(量子比特频率的站点间变化)进行微妙的平衡,以防止局部注入的信息在扩展的多体状态中分散。 Transmon 研究已经建立了不同的模式来应对效率低下(由于耦合小或无序大而导致的门速度慢)和信息丢失(耦合大或无序太小)之间的困境。我们使用当代量子处理器作为蓝图,在精确对角化研究中分析了 transmon 量子计算机的小型实例。仔细研究光谱、多体波函数和量子比特-量子比特相关性以获得实验相关的参数范围,发现一些流行的 transmon 设计方案在接近不可控混沌波动的区域运行。此外,我们在经典极限中建立了混沌的出现与量子混沌特征的出现之间的密切联系。我们的概念补充了传统的少量子比特图像,该图像通常用于优化小规模的设备配置。从我们全新的视角,可以探测到超出这个局部尺度的不稳定机制。这表明,在多体定位领域开发的技术应该成为未来 transmon 处理器工程的一个组成部分。
机器学习在研究和行业中正在迅速发展,新方法不断出现。这种速度甚至使专家要对新移民保持艰巨和艰巨。为了使机器学习神秘,本文将探讨十种关键方法,包括解释,可视化和示例,以提供对核心概念的基本理解。我曾经依靠多变量的线性回归来预测特定建筑物中的能源使用(以kWh),通过结合建筑年龄,故事数量,平方英尺和插入电器等因素。由于我有多个输入,因此我采用了多变量方法,而不是简单的一对一线性回归。该概念保持不变,但根据变量数量将其应用于多维空间。下图说明了该模型与建筑物中实际能耗匹配的程度。想象一下可以访问建筑物的特征(年龄,平方英尺等),但缺乏有关其能源使用的信息。在这种情况下,我可以利用拟合线来估计该特定建筑物的能源消耗。另外,线性回归使您能够衡量每个促成最终能量预测因素的重要性。例如,一旦建立了一个公式,就可以确定哪些因素(年龄,大小或身高)对能耗的影响最大。分类是一个基本的概念,然后再继续采用更复杂的技术,例如决策树,随机森林,支持向量机和神经网。1。2。随着机器学习的进展(ML),您将遇到非线性分类器,从而实现更复杂的模式识别。聚类方法属于无监督的ML类别,重点是将具有相似特征的观测值分组而无需使用输出信息进行培训。而不是预定义的输出,聚集算法根据数据相似性定义了自己的输出。一种流行的聚类方法是K-均值,其中“ K”代表用户为群集创建的数字。该过程工作如下:数据中的随机选择“ K”中心;将每个点分配到其最接近的中心;重新计算新的集群中心;并迭代直至达到收敛或最大迭代限制。例如,在建筑物的数据集中,应用K = 2的K均值,可以根据空调效率等因素将建筑物分为高效(绿色)和低效率(红色)组。聚类具有自己的一系列有用算法,例如DBSCAN和平均移位群集。降低性降低是另一种基本技术,用于管理具有许多与分析不相关的列或功能的数据集。主组件分析(PCA)是一种广泛使用的维度缩减方法,它通过找到最大化数据线性变化的新向量来降低特征空间,从而使其成为将大型数据集减少到可管理大小的有效工具。在具有较强线性相关性的数据集上应用维度降低技术时,可以通过选择适当的方法来最大程度地减少信息丢失。例如,T-Stochastic邻居嵌入(T-SNE)是一种流行的非线性方法,可用于数据可视化以及在机器学习任务中的特征空间降低和聚类。手写数字的MNIST数据库是分析高维数据的主要示例。此数据集包含数千个图像,每个图像都标记为0到9。使用T-SNE将这些复杂数据点投影到两个维度上,研究人员可以在原始784维空间中可视化复杂的模式。类似于通过选择最佳组件并将它们组装在一起以获得最佳性能,类似于构建自定义自行车,Ensemble方法结合了多个预测模型,以实现比单个模型本身所能实现的更高质量预测。诸如随机森林算法之类的技术(汇总在不同数据子集训练的决策树上)就是组合模型如何平衡差异和偏见的示例。在Kaggle比赛中表现最好的人经常利用集合方法,其中包括随机森林,Xgboost和LightGBM在内的流行算法。与线性模型(例如回归和逻辑回归)相比,神经网络旨在通过添加参数层来捕获非线性模式。这种灵活性允许在更复杂的神经网络体系结构中构建更简单的模型,例如线性和逻辑回归。深度学习,其特征是具有多个隐藏层的神经网络,包括广泛的架构,使得与其连续演变保持同步是一项挑战。深度学习在研究和行业社区中变得越来越普遍,每天引起新的方法论。为了实现最佳性能,深度学习技术需要大量数据和计算能力,因为它们的自我调整性质和大型体系结构。使用GPU对于从业者来说是必不可少的,因为它使该方法的许多参数能够在巨大的体系结构中进行优化。深度学习已在视觉,文本,音频和视频等各个领域中取得了非凡的成功。TensorFlow和Pytorch是该领域最常见的软件包之一。考虑一位从事零售工作的数据科学家,其任务是将衣服的图像分类为牛仔裤,货物,休闲或衣服裤。可以使用转移学习对训练衬衫进行分类的初始模型。这涉及重复一部分预训练的神经网络,并为新任务进行微调。转移学习的主要好处是,训练神经网络所需的数据较少,鉴于所需的大量计算资源以及获取足够标记的数据的困难,这一点尤为重要。在行动中的强化学习:最大化奖励和推动AI边界RL可以在设定的环境中最大化累积奖励,从而使其非常适合具有有限数据的复杂问题。在我们的示例中,一只鼠标会导航迷宫,从反复试验中学习并获得奶酪奖励。rl在游戏中具有完美的信息,例如国际象棋和GO,反馈快速有效。但是,必须确认RL的局限性。像Dota 2这样的游戏对传统的机器学习方法具有挑战性,但RL表现出了成功。OpenAI五支球队在2019年击败了世界冠军E-Sport球队,同时还开发了可以重新定位的机器人手。世界上绝大多数数据都是人类语言,计算机很难完全理解。NLP技术通过过滤错误并创建数值表示来准备用于机器学习的文本。一种常用方法是术语频率矩阵(TFM),其中每个单词频率均可在文档中计算和比较。此方法已被广泛使用,NLTK是用于处理文本的流行软件包。尽管取得了这些进步,但在将RL与自然语言理解相结合,确保AI可以真正理解人类文本并解锁其巨大潜力时仍将取得重大进展。TF-IDF通常优于机器学习任务的其他技术。TFM和TFIDF是仅考虑单词频率和权重的数值文本文档表示。单词嵌入,通过捕获文档中的单词上下文,将此步骤进一步。这可以用单词进行算术操作,从而使我们可以表示单词相似性。Word2Vec是一种基于神经网络的方法,它将大型语料库中的单词映射到数值向量。这些向量可用于各种任务,例如查找同义词或表示文本文档。单词嵌入还通过计算其向量表示之间的余弦相似性来启用单词之间的相似性计算。例如,如果我们有“国王”的向量,我们可以通过使用其他单词向量进行算术操作来计算“女人”的向量:vector('queen'')= vector('king'') + vector('king') + vector('woman'') - vector('男人')。我们使用机器学习方法来计算这些嵌入,这些方法通常是应用更复杂的机器学习算法的预步骤。要预测Twitter用户是否会根据其推文和其他用户的购买历史来购买房屋,我们可以将Word2Vec与Logistic回归相结合。可以通过FastText获得157种语言的预训练词向量,使我们可以跳过自己的培训。本文涵盖了十种基本的机器学习方法,为进一步研究更高级算法提供了一个可靠的起点。但是,还有很多值得覆盖的地方,包括质量指标,交叉验证和避免模型过度拟合。此博客中的所有可视化均使用Watson Studio Desktop创建。机器学习是一个AI分支,算法在其中识别数据中的模式,在没有明确编程的情况下进行预测。这些算法是通过试验,错误和反馈进行了优化的,类似于人类的学习过程。机器学习及其算法可以分为四种主要类型:监督学习,无监督学习,半监督学习和增强学习。这是每种类型及其应用程序的细分。**监督学习**:此方法涉及使用人类指导的标记数据集的培训机器。无监督学习的两种主要类型是群集和降低性。它需要大量的人类干预才能在分类,回归或预测等任务中实现准确的预测。标记的数据分为特征(输入)和标签(输出),教机教学机构要识别哪些元素以及如何从原始数据中识别它们。监督学习的示例包括:***分类**:用于分类数据,算法,诸如K-Neartem邻居,天真的贝叶斯分类器,支持向量机,决策树,随机森林模型排序和隐藏数据。***回归**:经常用于预测趋势,线性回归,逻辑回归,山脊回归和LASSO回归等算法,以确定结果与自变量之间的关系,以做出准确的预测。**无监督的学习**:在这种方法中,机器在没有人类指导的情况下处理原始的,未标记的数据,减少工作量。无监督的学习算法在大型数据集中发现隐藏的模式或异常,这些模式可能未被人类发现,使其适用于聚类和降低任务。通过分析数据并分组相似的信息,无监督的学习可以在数据点之间建立关系。无监督学习的示例包括自动化客户细分,计算机视觉和违规检测。基于相似性的聚类算法组原始数据,为数据提供结构。这通常用于营销以获取见解或检测欺诈。一些流行的聚类算法包括层次结构和K-均值聚类。此迭代过程随着时间的推移增强了模型的准确性。维度降低在保留重要属性的同时减少数据集中的功能数量,使其可用于减少处理时间,存储空间,复杂性和过度拟合。特征选择和特征提取是使用两种主要方法,其中包括PCA,NMF,LDA和GDA在内的流行算法。半监督学习通过将少量标记的数据与较大的原始数据结合在一起,在受监督和无监督学习之间取得了平衡。与无监督学习相比,这种方法在识别模式和做出预测方面具有优势。半监督学习通常依赖于针对两种数据类型培训的修改后的无监督和监督算法。半监督学习的示例包括欺诈检测,语音识别和文本文档分类。半监督学习:通过伪标记和传播自训练算法增强模型的准确性:这种方法利用了称为伪标记的现有的,有监督的分类器模型来微调数据集中的较小的标记数据集。伪标记器然后在未标记的部分上生成预测,然后将其添加回数据集中,并具有准确的标签。标签传播算法:在标签传播中,未标记的观测值通过图神经网络中的动态分配机制接收其分配的标签。数据集通常以一个已经包含标签的子集开始,并标识数据点之间的连接以传播这些标签。概率:IB(增加爆发)-30%此方法可以快速识别社区,发现异常行为或加速营销活动。强化学习:强化学习使嵌入在AI驱动软件计划中的智能代理能力独立响应其环境,并做出旨在实现预期结果的决策。这些药物是通过反复试验的自我训练,获得了理想的行为和对不良行为的惩罚,最终通过积极的加强来达到最佳水平。强化学习算法的示例包括Q学习和深度强化学习,这些学习通常依赖大量的数据和高级计算功能。基于神经网络和深度学习模型领域内的基于变压器的体系结构,Chatgpt利用机器学习能力来掌握和制作模仿人类之间的对话互动。