行业4.0应用程序涉及更多数量的传感器或物联网(IoT)设备来支持行业自动化。它涉及更多的计算来分析从处理单元的几个关键部分收集的传感器数据。稀疏信号处理是在通信和信号处理领域中具有许多应用的。本文介绍了一种新的方法,可以借助水平交叉采样(LCS)和基于回溯的基于回溯的迭代硬阈值(BIHT)算法进行重建。该过程涉及,信息信号使用发射机侧的不均匀采样将信息信号转换为随机稀疏信号,然后可以使用接收器侧的BIHT算法将其重建。模拟结果表现出所提出的BIHT重建的出色性能。
定义:IEC [321-01-01]定义的仪器变压器。旨在将信息信号传输到测量仪器,仪表以及保护性或控制设备的变压器。lpit:IEC 61869定义的低功率仪器变压器。它旨在连接到需要低功率(模拟或数字)的仪器,仪表和保护或控制设备。LPIT的一般设计包含3个元素:传感,链接和合并单元,如第2章FD-PAC:完全数字保护和控制系统。保护和控制系统旨在从其数字信息信号中接收数字信息信号。sv:由IEC 61850定义的采样值:从LPIT传输信息到FDPAC的数字信息格式。Other symbols and abbreviated terms AC alternating current ADC analogue-to-digital converter AIS air-insulated switchgear CS control system CT current transformer CVT capacitor voltage transformer EIT electronic LPIT EMC electromagnetic compatibility GIS gas-insulated switchgear GNNS global navigation satellite system IED intelligent electronic device IT instrument transformer LPIT low-power instrument transformer LPVT低功率电压变压器MU合并单元NCIT LPIT NTP NTP网络时间协议PACS保护自动化和控制系统PMU量法测量单元PTP精度时间协议SAMU独立合并单元TSO传输系统操作员
该术语在通过卫星通过卫星进行的所有数据技术通信上使用,无论是航天器是否将卫星图像,信息,信息发送给我们,同时在前往邻近的太阳,月亮,土壤,三月之间,以及电缆和天线,无线电信号传输中的所有内容,数字功能是信息信号。主要是,我们认为,诸如Google,Yahoo,Face-Book,以及作为州和私人公司的电子邮件沟通等信息设备以及个人团体在这篇文章中彼此提供了传播服务,以及其他所有会议,新闻,新闻和学习计划以及娱乐,游戏,游戏,工作。您可以独自建立kyber空间。
通信可以广泛定义为信息从一个点转移到另一点。当将信息在任何距离内传达时,通常都需要通信系统。在通信系统中,信息传输经常是通过将信息叠加到电磁波上的,该信息充当信息信号的载体。然后将此调制载体传输到接收到的所需目的地,并通过解调获得原始信息信号。使用以无线电频率以及微波和毫米波频率运行的电磁载波波和毫米波频率开发了该过程的复杂技术。但是,也可以使用从频率的光范围选择的电磁载体来实现“通信”。
1885 年发明的电报是无线技术的第一个例子。随着时间的推移,技术也在不断变化。目前,每个用户都希望拥有高速网络,而 RF 网络无法提供这种网络。因此,我们必须寻求替代技术,如光纤,以满足我们的需求。近年来,光传输越来越受到关注 [1]。信息通过光传输以无线方式传输,光传输也称为自由空间光学或光无线通信 (FSO)。FSO 是一种允许我们通过大气通道发送光形信号的技术。接收器端的 PD(光电二极管)接收由激光或 LED 产生并通过大气发送的光信号。FSO 通常通过红外光谱发送信息信号。尽管大气环境对红外波长的影响较小,但由于大气分子活动,某些范围会发生扭曲 [2]。最古老的方法之一,自由空间光学,可以追溯到公元七世纪。当时,罗马人和希腊人更倾向于利用阳光进行通信 [3]。接下来将介绍火、烟、信号旗和其他点对点通信技术的使用 [4]。其中一种
引言研究和创新可以通过数字技术来提高循环且竞争激烈的欧洲制造业。数据互操作性和质量及其结构,真实性和完整性是剥削数据值的关键,尤其是在AI部署的背景下。量子计算,即使用量子力学现象来执行计算,这是一个可以为人和企业做出根本性变化的领域。R. P. Feynman [1]提出了使用量子力学进行计算的第一个建议之一。最流行的量子计算模型是基于量子位或量子的量子电路。光子积分电路(图片),也称为光学芯片,将多个(至少两个)光子函数整合到光学波长上的信息信号。选择光子学以接近量子计算有两个主要优点。首先是,据信随机噪声水平降低了几个数量级,即使是基于物质的方法的最小噪声。其次,为经典计算目的而努力追求图片,量子体系结构所需的核心组成部分已经在研究中。此外,照片已被证明不仅是CMOS兼容的,而且可以在CMOS制造技术和标准方面没有任何更改来构建它们[2,3]。在所有人中,硅光子学[4]由于其低光谱分散体和高折射率而容易整合复杂的光学系统。硅图片用于量子计算,可以通过线性光学量子电路和单个光子来实现。