全球范围内接种 SARS-CoV-2 疫苗的人数不断增加,导致人们观察到接种后出现各种神经系统并发症。在印度,80% 的 COVID-19 疫苗接种涉及 Covishield(ChAdOx1-S/nCoV-19,阿斯利康)疫苗,其次是 Covaxin(灭活 SARS-CoV-2 抗原)疫苗。印度政府随后批准了 Sputnik 疫苗和强生疫苗,但这些疫苗接种量很少。截至 2021 年 10 月 27 日,印度约有 10 亿人接种了疫苗。1 世界各地都有关于 COVID-19 疫苗并发症的轶事病例报告,包括格林-巴利综合征 (GBS)、疫苗诱导的血栓前免疫性血小板减少症 (VIPIT) 和脑静脉血栓形成 (CVT)。最近的一篇文章报道了印度七例格林-巴利综合征病例。2 在这里,我们报告了 18 名患者,他们在接种疫苗后出现了一系列神经系统并发症,主要与 Covishield 有关,少数与 Covaxin 有关。
目的。我们为 X 射线照射吸积盘的宽带光谱能量分布 (SED) 开发了一种新的物理模型,该模型考虑了吸积盘和 X 射线冕的相互作用,包括由中心黑洞 (BH) 的强引力对光传播和光子能量从盘到冕静止坐标系或从冕静止坐标系到观察者的转换引起的所有相对论效应。方法。我们假设一个开普勒光学厚、几何薄的吸积盘和一个灯柱几何中的 X 射线源。X 射线冕发射各向同性的幂律类 X 射线谱,具有高能截止。我们还假设标准盘模型最内层热辐射释放的所有能量都被传输到冕,从而有效冷却该区域的盘。此外,我们还包括由于 X 射线源对圆盘照明的吸收部分进行热化而导致的圆盘加热。还包括由于圆盘照明而导致的 X 射线反射。X 射线光度由从吸积盘(或外部源)提取的能量和散射光子本身带来的能量给出,因此能量平衡得以保持。我们通过迭代过程计算了低能 X 射线截止,充分考虑了圆盘的 X 射线照明与进入日冕的吸积盘光谱之间的相互作用。我们还计算了日冕半径,考虑到康普顿化过程中光子数的守恒。结果。我们详细讨论了模型 SED 及其对系统参数的依赖性。我们表明,圆盘-日冕相互作用对产生的 SED 有深远的影响,它限制了 X 射线光度并改变了 UV 蓝色凸起的形状和正常化。我们还将模型 SED 与目前可用的类似模型预测的 SED 进行比较。我们使用新代码来拟合 NGC 5548 的宽带 SED,这是一个典型的 Seyfert 1 星系。当与之前模型拟合同一源的光学和紫外线时间滞后的结果相结合时,我们推断出黑洞自旋较高、系统倾角中等、吸积率低于爱丁顿的 10%。该源的 X 射线光度可能由圆盘中耗散的 45-70% 的吸积能量支持。新模型名为 KYNSED ,可供公众使用,用于在 XSPEC 光谱分析工具中拟合 AGN SED。结论。 AGN 吸积盘的 X 射线照射可以解释至少一个 AGN(即 NGC 5548)观测到的 UV 和光学时间滞后以及宽带 SED。过去几年中,我们利用多波长、长期监测观测同时研究了这些 AGN 的光学、UV 和 X 射线光谱和时间特性,这将使我们能够研究这些系统中的 X 射线和吸积盘几何形状,并限制其物理参数。
最近,LHCB测量结果确认了X(4140)状态,具有高统计数据1,2,质量为4146。5±4。5 +4。6-2。8 MEV和宽度83±21 +21 - 14 MEV,比以前的实验测量3大得多,并且确定量子数为J P C = 1 ++。关于X(4140)4,5的结构有许多不同的建议,尤其是因为宽度的差异很大。的确,在恢复更奇特的作业之前,耗尽观察到的状态的Q描述可能是自然而必要的。在这项工作中,通过求解相对论/非相对论schr odinger方程来掌握梅森波的功能,我们调查了x(4140)作为3 p 0模型中charmon态的衰减属性,并提供有关搜索X(4140)的更多信息,以提取X(4140),以提取更多精确的信息。
“太空科学”是一个涵盖地球观测和与空间相关的科学研究的伞。地球观测(EO)卫星使用独特的有利位点可见光或无线电谱观察地球及其大气。它提供的信息用于广泛的目的,包括天气预报,环境监测,气候变化研究以及许多商业活动。射电天文学和空间研究有助于我们对空间的了解和宇宙的发展。以下服务属于此类别:
时间:16.10.2024,下午5点,地点:IGZW,Gregor-Mendel-STR。4 3层会议室门在下午4:45开放免费啤酒,饮料和小吃!!
探测DNA复制动力学的主要方法是DNA纤维分析,该分析利用胸苷类似物掺入新生的DNA中,然后将DNA纤维的免疫荧光显微镜检查。除了耗时且容易出现实验者偏见外,它不适用于研究线粒体或细菌中的DNA复制动力学,也不适合进行高通量分析。在这里,我们介绍了质谱 - 基于新生DNA(MS波段)的分析,作为DNA纤维分析的快速,无偏,定量的替代方案。在这种方法中,使用三重四极尖串联质谱法对胸苷类似物的结合进行定量。MS波段准确地检测到人类细胞的细胞核和线粒体以及细菌的DNA复制改变。在大肠杆菌DNA损伤诱导基因库中捕获的MS-BAND捕获的复制改变的高通量能力。因此,MS波段可以作为DNA纤维技术的替代方案,并具有对不同模型系统中复制动力学的高通量分析的潜力。