蛋白质组学的发展。13,14 人们希望开发超灵敏、经济高效且简单的表征技术来获得生理环境中的天然和内在蛋白质结构。在不同的技术中,光学方法是实现这一目标最有效的方法之一。表面增强拉曼光谱 (SERS) 已被接受为蛋白质组学中一种很有前途的工具,因为它能够以非侵入性方式提供指纹信息并具有单分子灵敏度。15,16 1980 年,Cotton 等人利用表面增强共振拉曼散射检测细胞色素 C (Cyt C) 和肌红蛋白,为 SERS 在蛋白质检测中的应用打开了大门。 17 事实上,SERS 信号主要由辅因子(例如卟啉和阿维腺嘌呤二核苷酸)决定,因为它们具有较大的拉曼截面,并且在适当的入射光下具有共振效应。18
拉曼光谱法(RS)是一种众所周知的技术,它广泛用于物理化学,材料物理,生物学,工程甚至行星探索的广泛领域。rs已成为表征材料的化学成分和分子结构的主要工具之一。有关缺陷性质,材料的结晶或无定形特征以及该技术的大量信息。在本期中,原始论文和评论文章尤其有望表明RS在诸如以下主题中的兴趣: - 控制材料的制备,例如薄膜,纳米和微结构材料,以及提高其质量; - 掺入点缺陷的探测和缺陷结构的研究; - 与相变的联系(共存阶段,相变); - 属性的增强(机械,电子,光学等)通过更好地了解结构。此问题可以概述该重要工具在物理和化学不同领域中的各种应用。
I. 引言 工业界、研究机构和学术界使用专门的辐照设备对微电子元件进行辐照试验,以研究单粒子效应 (SEE)。具体来说,散裂设备试图重现感兴趣的辐射环境,获得超过数百 MeV 的能量范围。只有大型加速器才能达到如此高的能量,因此全球范围内的可用性有限。在欧洲,用于微电子测试的两种散裂设备是啁啾辐照 (ChipIr) 和欧洲核子研究中心高能加速器混合场 (CHARM)。ChipIr 是英国卢瑟福·阿普尔顿实验室的光束线,它利用 ISIS 加速器的 800 MeV 质子在钨靶上的散裂来产生类似大气的中子束 [1]。 CHARM 是位于瑞士 CERN 的设施,它使用 PS 加速器的 24 GeV 质子作用于铜靶,产生高能强子混合场,主要为中子,但也包括质子、介子和 K 介子 [2]。根据辐射场的性质,ChipIr 主要用于地面或飞行高度测试,而 CHARM 则专用于加速器或太空应用。两者需要进行详细交叉校准的原因
有几种用于MSI研究的不同技术可以将其分类为硬和软电离技术。硬电离是指将过量的内部能量添加到分子中,并导致分子的广泛碎片化。这种类型的电离对于分子的结构表征非常有用。6软电离技术使用的能量较少,导致分子的分裂较少。因此,靶分子对于分析保持完整。基质辅助激光解吸/电离(MALDI)是进行软电离的最流行的方法之一。MALDI-MS已应用于多种应用,例如细菌7的质谱指纹和聚合物的特征,8种蛋白质,9和肽,其中10个等。MALDI-MS的过程就像Maldi-MSI一样,激光击中了包含矩阵的样品,然后生成离子以进行下检测,以提供有关样品的分子信息。但是,MALDI-MS和MALDI-MSI之间的关键区别在于空间信息。MALDI-MS提供了有关样品的分子信息,但没有以空间定义的方式(如Maldi-MSI赠款)提供此信息,如图1。Maldi-MSI,结合了样品区域上收集的所有光谱以创建一个离子图像,这是单独使用MALDI-MS实现的信息。16,17另一种广泛使用的用于成像的软电离技术是解吸电喷雾电离(DESI)。20,有趣的是,纳米颗粒增强Maldi在成像中广受欢迎,并且该技术已应用于多种样本类型,包括组织,11,12个3D细胞培养物,例如球体和类器官,13-15,甚至是单细胞成像。desi具有使用液体种剂提取的额外好处,该提取允许在环境条件下分析样品。18其他,不太广泛使用的MSI技术包括次级离子质谱法(SIMS)和激光消融电感耦合等离子体(LA-ICP)。SIMS是一种用于成像显示高空间分辨率的硬电离技术。尽管是以分析物分裂为代价的。基于LA-ICP的成像也显示出更高的空间分辨率,但主要提供拓扑元素。
多环芳烃(PAHS)的化学合成由Scholl 11-13和CLAR 14-16率先开创,并在整个20世纪进一步发展,正如我们先前的评论文章所总的总结。9,特别是在高效合成六边形 - 己糖甲苯烯(P -HBC,2)之后,通过氧化性分子内环氢化物的六磷酸化苯基苯苯(1)(图。1),通过使用量身定制的寡苯基作为原始物质,获得了多种pahs的PAH。9这样的PAH,由SP 2碳框架组成,延伸到1 nm以上,可以被视为最小的纳米属或石墨烯分子。10,17在过去十年中,扩展的PAH因此吸引了新的合成兴趣,并且作为结构定义良好的石墨烯分子,在未来的应用中具有很大潜力,例如在纳米电子,光电子四元素和菠菜中,具有很大的潜力。18–23
https://doi.org/10.26434/chemrxiv-2024-vptmp-v2 orcid:https://orcid.org/0000-0000-0000-500-5216-8353不通过chemrxiv对内容进行peer-review。 许可证:CC BY-NC-ND 4.0https://doi.org/10.26434/chemrxiv-2024-vptmp-v2 orcid:https://orcid.org/0000-0000-0000-500-5216-8353不通过chemrxiv对内容进行peer-review。许可证:CC BY-NC-ND 4.0
摘要。我们使用低成本,紧凑的拉曼光谱仪报告快速鉴定单个细菌。我们证明了60 s的程序足以在600至3300 cm-1的范围内获取全面的拉曼光谱。这次包括将小细菌聚集体的定位,单个个体的比对以及自发的拉曼散射信号收集。小细菌聚集体的快速定位,通常由小于十二个个体组成,是通过在24 mm 2的大型视野上进行镜头成像来实现的。无镜头图像还允许单个细菌与探测束的精确比对,而无需标准显微镜。在532 nm处的34兆瓦连续激光器的拉曼散射光被喂入定制光谱仪(原型龙卷风光谱系统)。由于该光谱仪的高光吞吐量,可接受的积分时间低至10 s。我们在七个细菌物种上总共记录了1200个光谱。使用此数据库和优化的预处理,获得了约90%的分类速率。我们的拉曼光谱仪的速度和敏感性为高通量和无损的实时细菌鉴定测定法铺平了道路。这种紧凑和低成本的技术可以使生物医学,临床诊断和环境应用受益。©2014光学仪器工程师协会(SPIE)[doi:10.1117/1.jbo.19.11.111610]
探测DNA复制动力学的主要方法是DNA纤维分析,该分析利用胸苷类似物掺入新生的DNA中,然后将DNA纤维的免疫荧光显微镜检查。除了耗时且容易出现实验者偏见外,它不适用于研究线粒体或细菌中的DNA复制动力学,也不适合进行高通量分析。在这里,我们介绍了质谱 - 基于新生DNA(MS波段)的分析,作为DNA纤维分析的快速,无偏,定量的替代方案。在这种方法中,使用三重四极尖串联质谱法对胸苷类似物的结合进行定量。MS波段准确地检测到人类细胞的细胞核和线粒体以及细菌的DNA复制改变。在大肠杆菌DNA损伤诱导基因库中捕获的MS-BAND捕获的复制改变的高通量能力。因此,MS波段可以作为DNA纤维技术的替代方案,并具有对不同模型系统中复制动力学的高通量分析的潜力。
计算免疫学研究小组正在寻求生物信息学分析师(具有机器学习和预测性建模的经验),以解决免疫疾病界面处的一系列计算复杂问题。这涵盖了广泛的疾病,包括癌症免疫学和免疫疗法,针对癌症和新兴疾病的疫苗设计以及自身免疫性的未来研究。我们致力于开发利用免疫系统消除该疾病的新免疫疗法。我们的工作和发现有助于改善世界各地患者的治疗和护理。我们的工作旨在开发新型的免疫疗法和疫苗,利用先进的基因组学,转录组学和蛋白质组学管道来研究免疫力。我们使用开发的数据集来更好地了解疫苗设计中的机器学习和人工智能任务的免疫系统。团队由生物学家,统计学家,软件工程师和数据科学家等多元化专业人士组成,在国际上合作以创建新的疗法。该角色在数据科学和高性能计算方面提供了广泛的培训,并访问了顶级超级计算机。我们提供了有竞争力的国际工资和专业增长的机会。与我们一起解决免疫疗法和疾病研究中一些最具挑战性的问题。
LGDA 的使命是为患者社区及其家人提供支持;为社区、专业人士和普通公众提供教育;并支持能够增进对这些疾病的了解并建立诊断和管理最佳实践的研究,从而为全身淋巴异常 (GLA)(以前称为淋巴管瘤病)、卡波西样淋巴管瘤病 (KLA)、戈勒姆-斯托特病 (GSD) 和中枢传导淋巴异常 (CCLA)(以前称为淋巴管扩张症)患者带来希望并改善他们的生活质量。