量子误差校正1-4通过将多个物理量子器组合到逻辑量子位中,提供了达到实用量子计算的途径,其中添加了更多的量子器,将逻辑错误率指数置于指数抑制。但是,仅当物理错误率低于临界阈值时,这种指数抑制才会发生。在这里,我们在我们最新一代的超导处理器柳树:距离-7代码和与实时解码器集成的距离-7代码和距离-5代码上介绍了两个以下阈值表面代码记忆。将代码距离增加2时,我们较大的量子存储器的逻辑错误率被λ= 2.14±0.02抑制,最终以101 Qubit的距离-7代码为0.143%±0.003%误差误差误差。这种逻辑记忆也超出了盈亏平衡,超过了其最佳物理值的寿命2.4±0.3。实时解码时,我们的系统保持低于阈值的性能,在5到100万个周期的距离时,平均解码器延迟为63微秒,周期时间为1.1微秒。我们还将重复代码运行到距离29,发现逻辑性能受到罕见相关误差事件的限制,大约每小时发生一次或3×10 9周期。我们的结果表明设备性能,如果缩放,则可以实现大规模易于故障量子算法的操作要求。
1 平均住宅电价可从美国能源信息署 (EIA) 查询。平均电价是通过将最终消费者的电力收入除以相应的电力销售额计算得出的。最终消费者的平均电价代表所有消费者在各个行业和各个行业之间的消费者收入和销售额的加权平均值,并不反映电力公司向个人消费者收取的每千瓦时电价。太阳能系统安装成本来自加州分布式发电统计数据 (DGS),由申请人自行报告,无需额外验证。2007 年至 2015 年期间,DGS 通过将 CEC-PTC 评级 (AC) 除以总系统成本来计算每瓦成本,并根据加州太阳能计划的首次激励索赔申请审查日期进行分类。这些值未根据通货膨胀进行调整。2015 年至 2024 年,DGS 的方法进行了调整,使用 AC 容量表示所有 NEM 太阳能成本,所有储能成本/瓦值均使用储能大小 (kW AC) 表示。从 2015 年起,为了删除错误数据,排名前 1% 和后 1% 的申请均被删除。
抽象的钻石涂层具有许多出色的特性,使其成为高性能表面应用的理想材料。但是,没有革命性的表面修改方法,钻石涂层的表面粗糙度和摩擦行为会阻碍其满足高级工程表面要求要求的能力。这项研究提出了在涂料界面上的热应力控制,并通过激光诱导和机械切割证明了在常规钻石涂层表面上进行精确石墨化的新过程,而不会损害金属底物。通过实验和模拟,阐明了表面石墨化和界面热应力的影响机制,最终使钻石涂层表面向石墨烯的快速转化,同时控制涂层的厚度和粗糙度。与原始的钻石涂层相比,获得的表面显示出摩擦系数降低63%–72%,所有摩擦系数均低于0.1,至少为0.06,特定磨损率降低了59%–67%。此外,摩擦对应物中的粘合剂磨损受到显着抑制,从而使磨损降低了49%–83%。这表明机械化学磨损特性的润滑和抑制作用显着改善。本研究提供了一种有效且成本效益的途径,以克服工程钻石表面的应用瓶颈,有可能显着提高性能并扩大钻石涂层组件的应用范围。
抽象目的是将心肺运动测试(CPET)与指导指导指导的运动强度域确定的通气阈值(VTS:VT1和VT2)的引起的运动反应(VTS:VT1和VT2)进行了比较;提出方程来预测VTS的心率(HR);并比较处方方法的准确性。方法对CVD患者进行了972个最大跑步机CPET进行的横断面研究。首先,鉴定了VT并将其与指向指导的运动强度域进行了比较。第二,进行了多元线性回归分析,以生成VTS HR的预测方程。最后,通过平均绝对百分比误差(MAPE)评估处方方法的准确性。结果发现了VTS的显着分散体,具有相同的相对强度对应于不同指导指导的运动强度域。确定了基于峰值努力百分比的方法固有的数学错误,这可能有助于解释分散体。量身定制的多变量方程得出的VT1的R 2的R 2,VT2的0.901。新型VT1方程的 MAPE为6.0%,低于基于指南的处方方法(9.5至23.8%)。新型VT2方程的 MAPE为4.3%,低于基于指南的方法(5.8%–19.3%)。结论心血管康复的基于指南的运动强度域揭示了不一致和异质性,这限制了当前使用的方法。开发了针对CVD患者的新型多变量方程式,并证明了更好的准确性,表明当CPET无法使用时,这种方法可能是有效的选择。
“作为法医建筑学的主任,魏茨曼发明了一门新学科,甚至可能是一门全新的科学,一门全心投入、全心投入的公民科学……魏茨曼找到了一种方法,可以驾驭我们日常的数字娱乐,以实现强烈的道德目的。”-Wired