网络和安全性的收敛是Sase的基石。不幸的是,第一代SDWAN解决方案提供了连接分支站点和数据中心的网络功能,但缺乏集成的安全堆栈。另外,基于云的SSE平台具有松散集成的SD-WAN功能,这些功能不是本地集成或需要连接以首先穿越云安全服务,以从恶意软件和数据丢失预防中受益。具有本地集成的SD-WAN的IBOSS零信任SASE平台通过将网络,安全性和记录功能完全统一为单个统一平台来改变游戏。这包括将完整的安全性和日志记录功能直接从云中扩展到通过Iboss Onsite Gateways。这确保了整个云服务中可用的所有功能,包括在商品宽带上创建安全的站点对站点连接。结果是提高安全性,可见性提高,复杂性降低,成本降低以及指数的最终用户体验。
# Compare the first motif with everything and return P-values head ( compare_motifs (motifs, 1 )) #> Warning in compare_motifs(motifs, 1): Some comparisons failed due to low motif #> IC #> DataFrame with 6 rows and 8 columns #> subject subject.i target target.i score logPval #> #> 1 ORA59 1 ERF11 [duplicated #6.. 1371 0.991211 -13.5452 #> 2 ORA59 1 CRF4 [duplicated #566] 1195 0.990756 -13.5247 #> 3 ORA59 1 LOB 1297 0.987357 -13.3725 #> 4 ORA59 1 ERF15 618 0.977213 -12.9254#> 5 ORA59 1 ERF2 [重复#294] 649 0.973871 -12.7804#> 6 ORA59 1 ERF2 [重复#483] 1033 0.973871 -12.78804#> 1.31042E-06 0.00359318#> 2 1.33754E-06 0.00366754#> 3 1.55744E-06 0.00427049#> 4 2.43548e-06 06 06 06 0.00606667809# 0.00772019
主编:David Parker 副总裁/执行编辑:Bob Horan 产品开发经理:Ashley Santora 助理编辑:Kelly Loftus 编辑助理:Christine Ietto 媒体项目经理:Denise Vaughn 营销经理:Anne Howard 营销助理:Susan Osterlitz 副总编辑:Renata Butera 项目经理、制作:Renata Butera、Carol Samet 许可项目经理:Charles Morris 高级运营主管:Arnold Vila 运营专家:Michelle Klein 艺术总监:Steve Frim 室内设计:Ken Rosenblatt/Azimuth Interactive, Inc. 封面设计:Steven Frim 封面插图/照片:Robert Harding/Digital Vision/Getty Images, Inc.插图(内部):Azimuth Interactive, Inc. 图像资源中心主任:Melinda Patelli 权利与许可经理:Zina Arabia 经理:视觉研究:Beth Brenzel 封面视觉研究与许可经理:Karen Sanatar 图像许可协调员:Angelique Sharps Photo 研究员:Diane Austin 排版:Azimuth Interactive, Inc. 印刷商/装订商:Courier/Kendallville 字体:10.5/12.5 Times LT Std
背景关于AI(人工智能)在更广泛社会中的作用的讨论已经持续了十多年。在许多行业(例如医学)中,我们已经看到AI计划可以自动化任务,管理质量控制并提高效率。在学术界,AI变得流行并广泛使用。在社会科学中,我们已经看到,在社会中增加AI的使用将导致咨询和失业。有人可能会争辩说,人工智能将提高生产力,比人类更快,更快地执行某些工作,并减少人们从事无聊,重复的工作的需求。简而言之,这种论点与十八世纪末和19世纪初的英国工业革命时期所使用的论点没有不同的论点(Mokyr等人2015)或在20世纪后期引入机器人(Dhillon等,2002)。最近,我们看到了2020年代的AI工具(例如Chatgpt)的AI工具能力的迅速增长。这是由于机器学习的能力迅速提高,尤其是生成AI(Genai),这就是Chatgpt。这增加了公众,媒体和对该主题的学术兴趣。许多非技术人员,包括学生,对Chatgpt的巨大能力产生的文本等于平均人类生产的文本感到惊讶(Simkhada等,2024)。毫无疑问,AI的采用,尤其是在学生和学生中,在尼泊尔也正在迅速发展。这一直是高中和大学老师的关注点。此外,这个问题在学术著作和期刊文章出版物领域变得更加重要。作为Dhaulagiri社会学和人类学杂志(DJSA)的编辑和编辑委员会成员,请参见我们领域的研究中使用AI的潜力,但与此同时,我们确实担心它在学术写作和出版中的滥用。AI对社会学对社会学的有用性的看法,我们通过要求2024年8月29日的免费版Chatgpt(https://chat.chatbotapp.ai/chats)询问Genai在社会学中的实用性。提出了以下问题:“人工智能在社会学中的作用是什么?”我们收到的完整答案在Box 1中列出。
adiv_boxplot。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3 ADIV_CORRKLOT。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 6 ADIV_MATRIX。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>3 ADIV_CORRKLOT。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>6 ADIV_MATRIX。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>6 ADIV_MATRIX。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。8 ADIV_STATS。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 9 adiv_table。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 11 as.list.rbiom。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。8 ADIV_STATS。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 adiv_table。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 as.list.rbiom。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 as.matrix.rbiom。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 AS_RBIOM。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14个婴儿。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>15 bdiv_boxplot。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>15 BDIV_CLUSTERS。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>19 bdiv_corrklot。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>20 bdiv_heatmap。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>23 bdiv_ord_plot。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>26 bdiv_ord_table。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>29 bdiv_stats。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>31 bdiv_table。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>34 bdply。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。37 biom_merge。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。38 convert_to_se。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。39 Distmat_ord_table。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>40 DISTMAT_STATS。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>41个宝石。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>42瞥见。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。43 HMP50。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。44 modify_metadata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>44 plot_heatmap。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>45 pull.rbi。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>49稀有。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>50个ramefy_cols。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>51 RARE_CORRKLOT。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>52 RAMED_MULTIPLOT。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。55 race_stacked。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。57 read_biom。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。58 read_fasta。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。60 read_tree。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。60个样本_sums。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。61 slice_metadata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。62 Stats_boxplot。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。65 Stats_corrplot。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。68 Stats_table。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>70子集。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>72 tuxa_boxplot。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>74个taxa_clusters。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>78 tuxa_corrklot。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>79 taxa_heatmap。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>82 div>
主编:David Parker 副总裁/执行编辑:Bob Horan 产品开发经理:Ashley Santora 助理编辑:Kelly Loftus 编辑助理:Christine Ietto 媒体项目经理:Denise Vaughn 营销经理:Anne Howard 营销助理:Susan Osterlitz 副总编辑:Renata Butera 项目经理、制作:Renata Butera、Carol Samet 权限项目经理:Charles Morris 高级运营主管:Arnold Vila 运营专家:Michelle Klein 艺术总监:Steve Frim 室内设计:Ken Rosenblatt/Azimuth Interactive, Inc. 封面设计:Steven Frim 封面插图/照片:Robert Harding/Digital Vision/Getty Images, Inc. 插图(内部):Azimuth Interactive, Inc. 图像资源中心主任:Melinda Patelli 权利与许可经理:Zina Arabia 经理: 视觉研究:Beth Brenzel 封面视觉研究与许可经理:Karen Sanatar 图像许可协调员:Angelique Sharps 照片研究员:Diane Austin 构图: Azimuth Interactive, Inc. 印刷商/装订商:Courier/Kendallville 字体:10.5/12.5 Times LT Std
7.5 EVM 概述 7-11 7.5.1 基本 EVM 描述 7-11 7.5.2 挣值管理系统的组件和流程 7-12 7.5.2.1 工作说明书 (SOW) 7-12 7.5.2.2 工作分解结构 (WBS) 7-12 7.5.2.3 承包商项目组织 7-12 7.5.2.4 项目进度表 7-13 7.5.2.5 预算分配和资源规划 7-14 7.5.2.5.1 建立控制帐户 (CA) 和控制帐户预算 7-15 7.5.2.5.2 绩效衡量基准 (PMB) 7-15 7.5.2.5.3 综合基准评审 (IBR) 7-16 7.5.2.5.3.1 IBR 政策和指导 7-17 7.5.2.6 会计考虑 7-17 7.5.2.7 挣值技术 7-18 7.5.2.7.1 工作量水平活动的规划和控制 7-19 7.5.2.8 绩效衡量与分析 7-19 7.5.2.8.1 重大差异 7-19 7.5.2.8.1.1 进度差异 (SV) 7-20 7.5.2.8.1.2 成本差异 (CV) 7-20 7.5.2.9 完成时估计 (EAC) 7-21 7.5.2.10 修订和数据维护 7-22 7.5.2.10.1 客户指示的变更 7-22 7.5.2.10.2 可追溯到以前的预算 7-22 7.5.2.10.3 控制内部PMB 的变更 7-22 7.5.2.10.4 超出目标基线 (OTB) 和超出目标进度 (OTS) 7-23
数据驱动的商业格局很难想象一个没有数据的世界。如今有这样的想法听起来甚至有点不现实。我们日常生活中所做的几乎每件事都会产生大量信息。以前,公司从未能够访问如今存储的海量数据,从客户和财务数据到运营和生态系统数据。公司在试图报告长期价值时面临的挑战之一是可用的海量数据以及如何从中提取意义。要理解这一挑战的规模,请考虑一下全球数字世界中的数据量每两年翻一番。在这种背景下,人工智能 (AI) 可能成为游戏规则的改变者,它能够理解这些数据并识别有意义的指标。
