2。更新大型ML模型。低级矩阵近似的一种相当现代的应用是用于“微调”巨大模型。在大型语言模型(LLMS)的设置中,经常有一些现成的巨大模型,其中数十亿(或更多)。鉴于这种大型模型已在巨大但通用的语料库(网络文本)上进行过培训,因此经常执行“微调”。这个微调阶段是在特定于域的数据集上进行的第二轮训练的阶段,通常大小相当适度。微调任务的示例可能是客户服务交流,ED论坛问和答案,医疗报告等的数据集。微调的挑战是,更新如此庞大的模型在计算上非常昂贵。2021纸洛拉:大型语言模式的低排名改编[1]使得1)1)微调更新通常接近低级,因此2)因此,2)一个人可以明确地以1000x或10,000x的参数训练原始模型的这些更新对原始模型的培训,如果您有兴趣,请查看原始论文(或讨论它的博客文章的动物园)。
脑电信号(EEG)是由大量神经元产生的非线性、非平稳、随机的微弱信号,在人工智能、生物医学工程等领域具有重要的研究价值和实际意义,而脑电特征提取是直接影响处理结果的重要步骤,目前常用的脑电特征提取方法有频域或时域分析、时频结合等方法。由于脑电信号的非线性,上述方法都存在一定的局限性。因此,该文提出一种基于局部均值分解和Fisher规则的多尺度模糊熵用于人体运动分析中的脑电特征提取。首先将脑电信号自适应地分解为一系列乘积函数(PF)分量,然后选取有效的PF分量并计算多尺度模糊熵,利用多尺度模糊熵进行特征提取。利用Fisher规则对模糊熵在不同尺度上的特征分类能力进行排序,选取排序最高的多尺度模糊熵构成最优特征向量,实现特征降维。实验结果表明,该方法能有效提取脑电信号特征,验证了新方法的有效性和可行性。
奇异价值分解对于工程和科学领域的许多问题至关重要。已经提出了几种量子算法来确定给定基质的奇异值及其相关的奇异向量。尽管这些算法是有希望的,但是在近期量子设备上,所需的量子子例程和资源太昂贵了。在这项工作中,我们提出了一种用于奇异值分解(VQSVD)的变分量子算法。通过利用奇异值的变异原理和ky fan定理,我们设计了一种新型的损失函数,以便可以训练两个量子神经网络(或参数化的量子电路)来学习奇异向量并输出相应的奇异值。更重要的是,我们对随机矩阵进行VQSVD的数值模拟以及其在手写数字的图像压缩中的应用。最后,我们讨论了算法在推荐系统和极地分解中的应用。我们的工作探讨了仅适用于Hermitian数据的量子信息处理的新途径,并揭示了矩阵分解在近期量子设备上的能力。
大脑计算机界面(BCI)多模式融合具有通过减轻与单个模态相关的缺点来以高度可靠的方式生成多个命令的潜力。在本工作中,通过同时记录的脑电图(EEG)(EEG)和功能性近红外光谱(FNIRS)信号融合来获得的混合EEG-FNIRS BCI系统 - 用于克服Uni-Mododity的局限性并获得更高的任务分类。尽管混合方法增强了系统的性能,但由于缺乏融合这两种方式的计算方法的可用性,这些改进仍然是适中的。为了克服这一点,提出了一种新的方法,使用多分辨率的奇异值分解(MSVD)来实现基于系统和特征的融合。使用KNN和树分类器比较了两种基于不同特征集的方法。通过多个数据集获得的结果表明,所提出的方法可以有效地融合这两种方式与分类精度的提高。