摘要。构建了一种基于自然交互行为手势的微型旋翼飞行器控制方法。为了实现通过手势控制微型旋翼飞行器的飞行姿态,通过Leap Motion控制器获取手掌平放姿态数据,通过坐标系变换和姿态角变换将数据转换为不同坐标系之间的旋翼飞行器姿态控制命令,并通过无线传输模块与微型旋翼飞行器进行通信,搭建了微型旋翼飞行器控制系统,实现了对旋翼飞行器的上升、悬停、降落、俯仰等飞行动作的控制。在实际实验中,通过不同的手势实现了对微型旋翼飞行器的飞行姿态控制。通过手势控制微型旋翼飞行器更符合自然交互的特点,是人机交互的一种延伸。
1.1 复合直升机示例。........................3 1.2 倾转旋翼飞机示例。。。。。。。。。。。。。。。。。。。。。。。。。3 1.3 前飞对后退叶片速度的影响。.........4 1.4 同轴反向旋转旋翼能够在前飞期间保持每个旋翼的升力不对称,每个旋翼的力矩相互抵消。通过消除后退叶片升力来平衡旋翼力矩的需要,可以缓解后退叶片失速,就像在单旋翼飞行器中一样(左图)[5]。..。。。。。。。。。。。。。。。。。。。。。。。。..4 1.5 兰利全尺寸风洞中的 PCA-2 转子测试装置 [11]。.9 1.6 带有悬臂转子配置的 Meyer 和 Falabella 风洞测试装置 [12]。.............................10 1.7 叶片表面压力端口的展向和弦向位置 [12]。11 1.8 零铰链偏移转子的轮毂组件,显示来自叶片的压力管连接到轮毂内的压力拾取器 [12]。.12 1.9 1965 年詹金斯在兰利全尺寸风洞中的测试装置 [13]。.14 1.10 高前进比时转子推力和 H 力系数与总距 (A0) 的关系,显示总距推力反转 [13]。..........15 1.11 反向速度转子风洞模型中使用的“可逆”翼型截面轮廓 [16]。.........................18 1.12 为反向速度转子风洞模型开发的每转两个斜盘 [16]。.。。。。。。。。。。。。。。。。。。。。。。。。...19 1.13 在恒定盘面载荷下测量的有效转子升阻比,以提高前进比 [16]。.......................21 1.14 升力对总距比与前进比的敏感度变化 [16]。....22 1.15 位于 NASA 艾姆斯研究中心 40 x 80 英尺 NFAC 风洞中的仪表化 UH-60A 空气负载旋翼 [17]。...。。。。。。。。。。。。。。。。。。。。。。24 1.16 压力传感器在仪表旋翼叶片上的分布 [17] 24 1.17 UH-60A 减速旋翼风洞试验中明显的集体推力反向趋势 [18]。...................................26 1.18 不同推进比下的升阻比与升力零和正 4 度轴,40% NR [18]。。。。。。。。。。。。。。。。。。。。。。。27
近来,无人机 (UAV) 作为一个快速发展的领域,吸引了越来越多的科学家和消费者的关注。人们对多旋翼无人机尤其感兴趣,它们因其低速飞行、悬停和垂直起降能力而被认为是用于高质量航空摄影、摄像、监控和其他地形探索的良好飞行平台。所述特性使它们易于在空间有限的条件下使用。显然,这种飞行器的行为是不稳定的,因此需要负责稳定和导航功能的飞行控制系统 (FCS)。此外,FCS 能够提供完全自主飞行的能力。当代电子技术的快速发展使得制造低成本和紧凑型 FCS 成为可能。然而,实施的测量单元的精度不高。多传感器数据融合是提高精度的方法之一。本文介绍了 FCS 开发中需要指导的要求和一般概念,以及飞行测试中获得的结果及其比较。特别关注多传感器数据融合方法,该方法可以提高飞行精度和可靠性。此外,还提供了硬件和软件架构的描述。
2.1 覆盖路径规划. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.3 近似分解. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................................................................................................................21 2.3.2 结构检查....................................................................................................................................................................................25 2.3.3 结论....................................................................................................................................................................................................25 2.3.3 结论....................................................................................................................................................................................................25 27
Calise 和 Preston [1] 开发了一种近似校正制导命令以消除风的影响的方法。分析表明,风对制导回路稳定性的影响相当于在大多数飞行条件下增加制导回路增益,甚至在风速超过飞行器空速时会导致回路增益符号反转。Luders 等人 [2] 提出了一种在线稳健轨迹规划,以在风不确定的情况下执行防撞和精确着陆。显式实时风建模和分类用于预测未来的干扰,采样技术确保有效保持对可能变化的稳健性。其他大多数工作 [3-6] 寻求稳健的翼伞终端制导,以便在各种风干扰下准确和迎风着陆。
摘要:设计并测试了一种用于现场测量动态充气机翼上下表面内外压差的仪器系统,揭示了充气翼型的空气动力学特性的重要见解。风洞试验证明了低压差读数在 1.0–120 Pa 范围内的全部能力,覆盖 3 至 10 m/s 的速度,攻角从 − 20 到 +25 ◦。读数稳定,在运行飞行范围内的变化系数为 2% 至 7%。实验数据证实了底部前缘再循环气泡的出现,与低雷诺数状态和进气口的存在有关。它支持基于局部压力差的空气动力学特性新方法的提议,该方法考虑了受限的气流结构并提供与实际观察相符的升力估计。结果也与之前按照不同策略获得的数据兼容,并被证明可以有效地参数化膨胀和失速现象。总体而言,该仪器可以直接用作飞行测试设备,并且可以进一步转换为崩溃警报和预防系统。
AudioLDM 设计概览,用于文本到音频生成(左)和文本引导的音频处理(右)。在训练期间,潜在扩散模型 (LDM) 以音频嵌入为条件,并在 VAE 学习的连续空间中进行训练。采样过程使用文本嵌入作为条件。给定预训练的 LDM,零样本音频修复和风格迁移以反向过程实现。前向扩散块表示用高斯噪声破坏数据的过程(参见公式 2)。来源:arXiv (2023)。DOI:10.48550/arxiv.2301.12503
2025 年 1 月 7 日 — 救世军(仅限 FPL 客户)。3629 S. US Highway 1。佛罗里达州皮尔斯堡... Development Christian。中心。Glenview Court 9999。圣露西港。使徒...
模拟混频器由键控信号控制,以在视频 DAC 的输出和模拟 RGB 输入之间切换。模拟 RGB 输入需要以直流耦合的方式与模拟混频器接口,而且这些 RGB 输入仅限于没有同步电平基座的 RGB 信号。可以通过设置 I 2 C 总线位 KEN = 1 来启用键控控制。可以生成两种键控:一种是外部键(当 KMOD[2:0] 全部为逻辑 0 时来自 EXTKEY 引脚),另一种是内部像素色键(当 KMOD[2:0] 不全部为逻辑 0 时)通过将输入像素数据与内部 I 2 C 总线寄存器值 KD[7:0] 进行比较而生成。受 KMOD[2:0] 位控制,有 4 种方式可以比较像素数据(见表 8)。