图3。神经影像学结果。在2019年1月19日发生急性中风时从MRI扫描中扩散序列;在右岩核核和邻近的白质(A)中,扩散限制是明显的。T2加权MRI从2021年1月22日起,显示了自中风(B)以来已经开发出来的脑乳突和相对心室的区域。功能性神经成像揭示了一个热点激活,由红圆圈表示,在中央沟的深度沿着前心回(C)的“手旋钮”区域。参与者的皮质表面的三维重建,该表面源自MRI,并以红色圆圈指示的想象的左手运动质心(d)。绿色阴影表示响应左手感觉刺激的区域。黑色正方形表示四个微电极阵列的位置。
图3。神经影像学结果。在2019年1月19日发生急性中风时从MRI扫描中扩散序列;在右岩核核和邻近的白质(A)中,扩散限制是明显的。T2加权MRI从2021年1月22日起,显示了自中风(B)以来已经开发出来的脑乳突和相对心室的区域。功能性神经成像揭示了一个热点激活,由红圆圈表示,在中央沟的深度沿着前心回(C)的“手旋钮”区域。参与者的皮质表面的三维重建,该表面源自MRI,并以红色圆圈指示的想象的左手运动质心(d)。绿色阴影表示响应左手感觉刺激的区域。黑色正方形表示四个微电极阵列的位置。
摘要:历史证据表明,自古埃及时代以来已经使用了假体。假体通常用于功能和化妆品外观。如今,随着技术的进步,诸如人工手的假体不仅可以提高功能,而且还具有心理优势,因此可以显着增强个人的生活水平。与高级科学结合,假体不仅是一种简单的机械装置,而且是一种美学,工程和医学奇迹。假肢是帮助截肢者重新融入社会的最佳工具。在本文中,我们讨论了假肢的背景和进步,其工作原则和可能的未来含义。我们还向读者留下一个公开的问题,假肢手是否可以模仿并取代我们的生物学手。
3.3 MDDA公园:Dehradun MDDA公园,也称为Rajpur Park是一个邻里公园,由Mussoorie Dehradun Development Agency(MDDA)计划在2008年,面积为2.5英亩。公园位于拉吉普尔路(Rajpur Road)的公园沿线采用多路电的设计,该设计与背景中的山脉和谐相处。公园设有带互动游戏的步行道和长凳,以及饮用水,厕所设施和食堂等基本设施。周围社区,居民和游客的人参观了这个地方。空间的用户包括家庭,学生和夫妻。出于安全原因,公园有名义入场费。它的开放时间为上午8点至下午6点,平均每天的平均人数约为350人,大部分用户在周末访问公园。
根据思想或大脑信号为这些人开发新的假肢界面的机会[3]。BCI的基本思想是将用户产生的大脑活动模式转化为相应的命令[1]。bcis系统避免了传统的通信渠道,即肌肉和言语,它们通过将大脑活动实时转化为命令,提供人脑和物理设备之间的直接通信和控制。BCI使用非侵入性的脑电图传感器从大脑中获取信号,这是一种相对较低的成本解决方案,并且还避免了危险的侵入性手术,其中将电极放置在大脑内,称为植入物。EEG技术假设由受试者头皮上的电极记录脑波[3]。该系统包括四个不同的阶段。正在提取原始的脑电波,处理信号,将其分类为不同的命令信号,并将其连接到假肢。基于EEG的BCI系统可以实施以克服假肢问题。 基于EEG的大脑控制的假肢是一个BCI系统,它使用脑电波作为命令信号来控制假肢的动作。 实施的这个BCI系统与定期的人类控制的动作相同。 该系统将检测可用作命令信号的脑电波,以控制屈曲和伸展的假肢运动。 屈曲和延伸取决于受试者的浓度水平和眼睛眨眼。 假体的控制取决于一个人的思想集中和集中精力的能力。基于EEG的BCI系统可以实施以克服假肢问题。基于EEG的大脑控制的假肢是一个BCI系统,它使用脑电波作为命令信号来控制假肢的动作。实施的这个BCI系统与定期的人类控制的动作相同。该系统将检测可用作命令信号的脑电波,以控制屈曲和伸展的假肢运动。屈曲和延伸取决于受试者的浓度水平和眼睛眨眼。假体的控制取决于一个人的思想集中和集中精力的能力。这可以通过几天的培训来实现。本文介绍的项目旨在使用EEG Neuro-Feedback技术通过大脑活动来开发可控制的低成本和多功能人类的假肢。
摘要 - 仿生手臂在截肢者的康复中起着重要作用,也有助于恢复他们的自信。在假肢的帮助下,人们的生活发生了巨大的变化,因为它们增加了活动能力,方便了日常琐事的完成,并提供了独立生活的手段。仿生手臂的工作取决于从截肢者肌肉收集的信号。当截肢者使用仿生手臂并弯曲其残肢肌肉时,特殊传感器会检测到自然产生的电信号,并将其转换成适当的仿生手部动作。仿生手臂只需思考要执行的动作即可充当真正的肢体。身体神经元产生的微小电信号有助于控制这些动作。它们由肌肉收缩产生,可以通过用户能够感觉到的皮肤上的电极进行测量。插入假肢轴的两个电极用于检测肌电信号,这些信号被传送到控制电子设备,然后这些信号被放大并用于激活五个电动机(每个手指一个),这些电动机移动手指和拇指,手会自动张开或闭合。因此,肌肉收缩的强度控制着速度和抓握力:弱信号产生缓慢的运动,强信号产生快速的运动。
过去也曾出现过类似的 BCI。然而,这些 BCI 有局限性。用户可以按下按钮——这是一个不需要连续移动的简单动作。事实证明,使用这些 BCI 很难实现更复杂的动作。在何和他的团队的演示中,受试者通过精神控制机械臂跟踪光标。假手指能够像真手指一样连续跟踪光标。他说,该系统可以与用脑电图记录和无线电极编程的智能手机应用程序一起使用。这将消除对脑部手术的需要。
摘要。具有潜在毒性大气的工业环境(例如研究实验室或测试中心)对人类操作员的健康风险增加,特别是因为他们需要在很短的时间内采取行动以防止工作场所发生致命事件。在本文中,我们提出了一种基于人体手臂建模和仿真的工业适用性解决方案,该解决方案能够取代人类操作员直接干预操纵可能产生影响空气质量的有毒蒸汽或含有高流行病学风险物质的物质,或其他在操作不当的情况下可能产生爆炸性情况的物质。基于EEG-EMG解决方案,人类操作员仅通过使用大脑和神经元网络产生的自身电信号即可从安全位置远程控制人体假肢。
尽管智能假肢领域的技术进步最近取得了进步,但患者的排斥率仍然很高。这种拒绝的原因是多种多样的,从有限的功能和困惑界面到不适,大多数问题仅通过主观自我评估才能辨别。令人惊讶的是,缺乏特定的方法来衡量新的假体解决方案的优越性。必须深入研究操纵肌电假肢的复杂性,以理解用户面临的挑战并增强假肢配件和康复技术。这些障碍可能会导致被动用法或完全放弃假体装置。为了克服这些障碍,假肢领域不断寻求更复杂的技术来增强功能,用户友好性和设备寿命,并减少维护。这项研究对有关控制问题的文献进行了有条理的检查 反馈。
摘要 — 用户-假肢接口 (UPI) 的复杂性,用于控制和选择主动上肢假肢的不同抓握模式和手势,以及使用肌电图 (EMG) 所带来的问题,以及长时间的训练和适应,都会影响截肢者停止使用该设备。此外,开发成本和具有挑战性的研究使得最终产品对于绝大多数桡骨截肢者来说过于昂贵,并且经常为截肢者提供无法满足其需求的界面。通常,EMG 控制的多抓握假肢将一组肌肉的特定收缩的具有挑战性的检测映射到一种抓握类型,将可能的抓握次数限制为可区分的肌肉收缩次数。为了降低成本并以定制方式促进用户和系统之间的交互,我们提出了一种基于图像和 EMG 对象分类的混合 UPI,与 3D 打印上肢假肢集成,由 Android 开发的智能手机应用程序控制。这种方法可以轻松更新系统,并降低用户所需的认知努力,从而满足功能性和低成本之间的权衡。因此,用户可以通过拍摄要交互的物体的照片来实现无数预定义的抓握类型、手势和动作序列,只需使用四种肌肉收缩来验证和启动建议的交互类型。实验结果表明,假肢在与日常生活物体交互时具有出色的机械性能,控制器和分类器具有很高的准确性和响应能力。
