TuT1(教程)- 可靠性物理与工程简介,Joe McPherson,McPherson Reliability Consulting LLC 所有材料和设备都会随着时间的推移而退化。因此,可靠性物理具有重要的理论和实践意义。可靠性调查通常从测量材料/设备在应力下的退化率开始,然后对失效时间与施加应力的关系进行建模。这里使用的术语“应力”非常笼统:应力指任何外部因素(电气、机械、化学、热、电化学等)能够产生材料/设备退化的因素。当退化量达到某个临界阈值水平时,就会发生失效时间。由于设备通常需要不同程度的退化才能引发故障,因此故障时间本质上是统计性的,并讨论了两种常见的故障分布:威布尔和对数正态分布。故障时间 (TF) 建模通常假设幂律或指数应力依赖性,具有 Arrhenius 或 Eyring 类活化能。从这些 TF 模型中,可以推导出加速因子,这些因子往往作为加速测试的基础。在本演讲中,将回顾几种半导体故障机制:电迁移 (EM)、应力迁移 (SM)、时间相关电介质击穿 (TDDB)、热载流子注入 (HCI)、负偏置温度不稳定性 (NBTI)、等离子体诱导损伤 (PID)、单粒子翻转 (SEU)、表面反转、热循环疲劳和腐蚀。本教程应为参会者提供坚实的基础,以便更好地理解 IRPS 上发表的论文。TuT2(教程) - 集成电路和半导体器件可靠性分析的机器学习,伊利诺伊大学厄巴纳-香槟分校 Elyse Rosenbaum 本教程适用于对机器学习(“ML”)如何在其学科中应用感兴趣的可靠性物理专家。它将使用机器学习的广泛定义,将 ML 等同于数据驱动建模,并将其与基于物理知识(即机械模型)的模型和预测进行对比。神经网络是一种流行的数据驱动建模模型结构,因为它具有灵活性;它通常被称为通用近似器。本教程将介绍神经网络训练的基础知识。本文将介绍将 ML 应用于可靠性分析各个方面的研究成果。TuT3(教程)- BEOL 和 MOL 可靠性,Shinji Yokogawa,电气通信大学 BEOL 可靠性在半导体技术中发挥着至关重要的作用,从开发到质量保证。典型的磨损机制包括电迁移 (EM)、应力迁移/应力诱导空洞 (SM/SIV)、热机械稳定性、低介电击穿 (TDDB) 和芯片/封装相互作用 (CPI)。最近,围绕栅极/接触或 MOL 可靠性的可靠性问题已被添加到列表中。由金属和电介质界面中的缺陷及其产生引起的互连、通孔和接触可靠性挑战被认为是重要问题,即使代数、结构和材料发生变化。了解它们以及如何抑制它们是实现高可靠性的关键。了解每个集成电路的寿命分布行为对于确定由许多部分组成的集成电路的可靠性也至关重要。本教程将介绍物理和统计
TuT1(教程)- 可靠性物理与工程简介,Joe McPherson,McPherson Reliability Consulting LLC 所有材料和设备都会随着时间的推移而退化。因此,可靠性物理具有重要的理论和实践意义。可靠性调查通常从测量材料/设备在应力下的退化率开始,然后对失效时间与施加应力的关系进行建模。这里使用的术语“应力”非常笼统:应力指任何外部因素(电气、机械、化学、热、电化学等)能够产生材料/设备退化的因素。当退化量达到某个临界阈值水平时,就会发生失效时间。由于设备通常需要不同程度的退化才能引发故障,因此故障时间本质上是统计性的,并讨论了两种常见的故障分布:威布尔和对数正态分布。故障时间 (TF) 建模通常假设幂律或指数应力依赖性,具有 Arrhenius 或 Eyring 类活化能。从这些 TF 模型中,可以推导出加速因子,这些因子往往作为加速测试的基础。在本演讲中,将回顾几种半导体故障机制:电迁移 (EM)、应力迁移 (SM)、时间相关电介质击穿 (TDDB)、热载流子注入 (HCI)、负偏置温度不稳定性 (NBTI)、等离子体诱导损伤 (PID)、单粒子翻转 (SEU)、表面反转、热循环疲劳和腐蚀。本教程应为参会者提供坚实的基础,以便更好地理解 IRPS 上发表的论文。TuT2(教程) - 集成电路和半导体器件可靠性分析的机器学习,伊利诺伊大学厄巴纳-香槟分校 Elyse Rosenbaum 本教程适用于对机器学习(“ML”)如何在其学科中应用感兴趣的可靠性物理专家。它将使用机器学习的广泛定义,将 ML 等同于数据驱动建模,并将其与基于物理知识(即机械模型)的模型和预测进行对比。神经网络是一种流行的数据驱动建模模型结构,因为它具有灵活性;它通常被称为通用近似器。本教程将介绍神经网络训练的基础知识。本文将介绍将 ML 应用于可靠性分析各个方面的研究成果。TuT3(教程)- BEOL 和 MOL 可靠性,Shinji Yokogawa,电气通信大学 BEOL 可靠性在半导体技术中发挥着至关重要的作用,从开发到质量保证。典型的磨损机制包括电迁移 (EM)、应力迁移/应力诱导空洞 (SM/SIV)、热机械稳定性、低介电击穿 (TDDB) 和芯片/封装相互作用 (CPI)。最近,围绕栅极/接触或 MOL 可靠性的可靠性问题已被添加到列表中。由金属和电介质界面中的缺陷及其产生引起的互连、通孔和接触可靠性挑战被认为是重要问题,即使代数、结构和材料发生变化。了解它们以及如何抑制它们是实现高可靠性的关键。了解每个集成电路的寿命分布行为对于确定由许多部分组成的集成电路的可靠性也至关重要。本教程将介绍物理和统计
各种设施的能源供应发展的有前途的领域之一是,基于传统和可再生能源的能源自我足够的复合物和自己的加热系统有可能。然而,众所周知,由于白天的时间积累的随机性和不均匀性质,这些来源的能量是复杂的。因此,有必要提供这些系统的不间断操作。可以通过将传统的电源源整合到其中以及应用各种能源蓄能器的情况下提供此类组合系统的运行稳定性和可靠性。对各种热量积累方法的分析表明,最有希望的热蓄能器类型是累积材料的相位或化学转化的热蓄能器[1,2]。此类蓄能器在热蓄能材料的质量单元中提供高密度的累积能量,并使维持稳定的累加器偏置温度成为可能。许多出版物[1-4]回顾了具有相变的热蓄能器中使用的现有热量存储材料,并考虑了其在来自不同热源的热量积聚中的应用范围。Pereira and Eames提出了热量温度在0到250°C范围内的相变温度的概述,并评估了热量储存热量单元的实用设计[3]。所研究的材料可在不同的冷却液温度下使用来自不同类型来源的热量蓄热剂温度。Kenisarin [4]总结了先前关于过渡温度,熔点,热容量和热导率的研究结果,许多有机物质的长期特征,它们的组成和化合物。 Sharma等人[1]介绍了当前的热能研究和储存热量蓄热器中的热能概述,这些蓄热量累加器中广泛用于热泵,太阳能技术和航天器热控制程序,用于加热和冷却建筑物的潜热储存系统。 du et al [2]根据工作温度范围(-20°C至+200°C)提供了最新的相变材料(PCM)及其用于加热,冷却和发电的应用。 审查表明,在低温和中等低温范围内,PCM可实现高达12%的能源节省,而冷却负载的减少最高可实现80%。 用于加热系统的PCM存储可以将效率从26%提高到66%。 Pereira等[5]研究了热量积累的几何形状和相变的构型,并进行了数值和实验研究,以评估参数的影响,例如入口温度和质量流量。 表明,最合适的存储材料是熔点在0 O C到60 O的范围内的储存材料。许多研究[6-10]用于研究胶囊型电池PCM相变的热量积累过程。 Suganya等,Agyenim等,Kalaiselvam等[6,7,8]介绍了石蜡熔化过程的分析,石蜡的熔化过程被放置在圆柱形胶囊中,用于从太阳能收集器中热能积累的系统中。Kenisarin [4]总结了先前关于过渡温度,熔点,热容量和热导率的研究结果,许多有机物质的长期特征,它们的组成和化合物。Sharma等人[1]介绍了当前的热能研究和储存热量蓄热器中的热能概述,这些蓄热量累加器中广泛用于热泵,太阳能技术和航天器热控制程序,用于加热和冷却建筑物的潜热储存系统。du et al [2]根据工作温度范围(-20°C至+200°C)提供了最新的相变材料(PCM)及其用于加热,冷却和发电的应用。审查表明,在低温和中等低温范围内,PCM可实现高达12%的能源节省,而冷却负载的减少最高可实现80%。用于加热系统的PCM存储可以将效率从26%提高到66%。Pereira等[5]研究了热量积累的几何形状和相变的构型,并进行了数值和实验研究,以评估参数的影响,例如入口温度和质量流量。表明,最合适的存储材料是熔点在0 O C到60 O的范围内的储存材料。许多研究[6-10]用于研究胶囊型电池PCM相变的热量积累过程。Suganya等,Agyenim等,Kalaiselvam等[6,7,8]介绍了石蜡熔化过程的分析,石蜡的熔化过程被放置在圆柱形胶囊中,用于从太阳能收集器中热能积累的系统中。由于进行了研究,得出的结论是,在这种类型的蓄能器中,PCM的导热率具有