该课程将在线性优化,整数优化和凸优化中教基本概念,模型和算法。该课程的第一个模块是优化和相关数学背景中关键概念的一般概述。该课程的第二个模块是关于线性优化的,涵盖了建模技术,基本的多面体理论,单纯形方法和偶性理论。第三模块是在非线性优化和凸锥优化的上,这是线性优化的重要概括。第四和最终模块是在整数优化的上,该模块以整数决策变量的灵活性增强了先前涵盖的优化模型。课程将优化理论与计算与现代数据分析的各种应用融合在一起。
理论背景由于其抽象性质和脱离古典物理原则的偏离,学生在高中学习QP(HS)方面表现出困难[例如,1]。先前关于困难的研究主要依赖于调查,访谈和解决问题的练习来诊断基本困难[例如,1,2,3]。这项研究研究了师生的教师和学生 - 学生的互动是很少见的,尤其是作为识别学生困难的工具,尽管存在这种工具[例如4]。此外,研究在识别HS中QP的某些核心主题的困难方面很少,例如叠加,波粒子偶性,纠缠和双缝实验。教育环境是基于学科文化(DC)方法[5]的课程。
我们为多体量子状态制定了波粒偶性的一般理论,该理论量化了波浪状和特色的特性如何相互平衡。与宽容的单粒子情况一样,在许多粒子路径的水平上,在此信息(在许多粒子的水平上)赋予粒子特征,而干扰 - 在这里,由于许多粒子振幅的相干叠加 - 表示小波般的特性。我们分析了多少个粒子,哪种信息通过费尔米离子或骨的区分性,相同和可能相互作用的粒子的区分性限制,限制了对许多粒子可观察到的干扰贡献,从而控制许多粒子量子系统中的量子到经典过渡。对于像Hong-Ou-Mandel的样式和类似Bose-Hubbard的示例性设置,我们的理论框架的多功能性被说明了。
摘要 - 未来的电力系统将在很大程度上依赖于具有大量分散的可再生能源和能源存储系统的微网格。在这种情况下,高复杂性和不确定性可能会使常规权力调度策略不可行。加强学习者(RL)控制器可以应对这一挑战,但是,不能提供安全保证,以防止其在实践中的部署中。为了克服这一限制,我们提出了一个经济派遣的正式验证的RL控制器。我们通过编码岛屿意外事件的时间相关约束来扩展常规约束。使用基于集合的向后触及性分析来计算偶性约束,RL代理的动作将通过安全层进行验证。不安全的动作被投影到安全的动作空间中,同时利用受约束的划界设置表示以提高效率。使用现实世界测量值在住宅用例上证明了开发的方法。
摘要 - 本文引入了一种分布式的应急检测算法,用于使用随机混合系统(SHS)模型在功率分配系统中检测不可观察的意外情况。我们旨在应对分销网络中有限测量能力的挑战,这些挑战限制了迅速检测意外事件的能力。我们将分布网络连接,负载馈线,PV和电池储能系统(BESS)混合资源的动力学结合到完全相关的SHS模型中,该模型代表分布系统作为意外情况下不同结构之间的随机切换系统。我们表明,SHS模型中的跳跃对应于物理功率网格中的突发事件。我们基于幅度调制输入(MAMI)采用探测方法,以使意外情况可检测到。通过对样本分布系统的模拟来验证所提出的方法的有效性。索引术语 - PV-BESS,分布系统,不可检测的偶性,随机混合系统,偶然性检测。
b part-b单元4量子力学:7+3(t)= 11小时的量子力学需求,波颗粒偶性,de-broglie假设,相位速度和群体速度和群体速度,波动功能,物理意义,显着性,归一化,归一化功能,特定和时间依赖时间和时间依赖时间和时间量化的量级和时间量化的量级和量化量级和时间量化的量级和量化功能(能量和量子),能量和量化量和量化量级和量度的量子和量度的量子和量度(量表),量级和量化量级和量化量和量化量和量化量和量化量和量度(能量量),并量化量级和量化量的量子和量度(量表)能量),一维盒中的粒子。量子计算简介(定性思想)单位-5半导体:6+2(t)= 9小时固体,Bloch定理和Bloch功能(仅定义),电子状态的有效质量,Fermi水平,FERMI水平,FERMI水平的位置,固有和超级序列的内在启动和超级启动启动, LED和太阳能电池及其应用。
电控制的光子电路对具有很大的能源效率和量子信息处理能力的信息技术有望。然而,典型光子材料的弱非线性和电响应是两个关键挑战。因此,已经对杂交电子光电系统(例如半导体激子 - 孔子体)进行了深入研究,因为它们的潜力允许更高的非线性和电气控制,到目前为止的成功率有限。在这里,我们展示了偶极性二利机的电场波导体系结构,该体系允许增强且可控制的极性非线性,从而实现了电反射的反射开关(镜像)和偶极极光利的晶体管。Polariton晶体管通过压缩稀释的偶性二极化脉冲,表现出非常强大的偶极相互作用,从而显示出封锁和抗块。使用一个简单的密度依赖性极化场来解释大型非线性,该电场非常有效地筛选外部电场,与固定偶极子相比,非线性的数量级增强。我们预测,在这种设备中,单个极性级别的量子封锁是可行的。
干扰。衍射。极化。量子力学:假设;波粒偶性。换向者和海森伯格的不确定性原则。schrödinger方程(时间依赖和时间独立)。恰好可解决的系统:粒子中的盒子,谐波振荡器和氢原子。穿过障碍物。静电:高斯定律及其应用,拉普拉斯和泊松方程,边界价值问题。Magneto静态:Biot-Savart Law,Ampere定理。电磁诱导。标量和向量电势,麦克斯韦方程。热力学,热力学功能,热容量焓,熵的第一和第二定律。在固体,晶体结构中键合。勇敢的格子。米勒指数。相互晶格。布拉格的法律和申请;衍射和结构因子。弹性特性,声子,特定于晶格的热量。游离电子理论和电子特异性热。电导率和热导率的Drude模型。大厅效应和热电功率。电子运动以周期性潜力,固体理论:金属,绝缘子和半导体。电介质。铁电。磁性材料。超导率:I型和II型超导体。
摘要。为提供安全的替代方案,用于术中的流体镜检查,已研究超声(US)作为各种计算机辅助矫形外科手术(CAOS)的替代安全成像方式。然而,低信号与噪声比,成像伪影和骨表面出现几毫米(mm)的厚度,阻碍了我们在CAOS中的广泛扩散应用。为了为这些问题提供解决方案,研究集中于精确,健壮和实时骨分割方法的发展。最近基于深度学习的方法显示出非常有希望的结果。但是,在训练深度学习模型时,骨头数据的稀缺引入了显着的挑战。在这项工作中,我们提出了一种基于一种新的生成对抗网络(GAN)结构的计算方法,以(1)生成合成的B模式US图像和(2)实时实时的骨表面掩模。我们展示了如何针对此类任务实现偶性概念。由两个卷积块武装,称为自预测和自我发项块,我们提出的gan模型合成了现实的B模式US图像和分割的骨骼面膜。使用两种不同的美国机器对27名受试者收集的1235次扫描进行了定量和定性评估研究,以显示我们模型与最先进的GAN的比较结果,用于使用U-NET进行骨表面分割的任务。
聚合物合成的最新进展也促进了聚合物生物缀合物合成的显着进展。在蛋白质 - 聚合物偶联物的早期合成中,大多数报告采用涉及氨基酸特异性或随机偶性聚合物与蛋白质22 - 24或Bioa官能耦合的方法。25 - 27最近,通过利用快速,有效和精确的举止能够合成聚合物的能力,已经出现了28种新的方法,用于合成蛋白质 - 聚合物结合物。2,29 - 33这些主要是涉及控制自由基聚合(CRP)方法(例如原子转移自由基聚合(ATRP),34 - 41 cu(0)介导的自由基聚合,42,43和环形聚合物的44.45 rigymerization-44,45的转移 - 以及Reversition-44,45,以及Reversiation-44,45 48个聚合物方法和链生长聚合技术。关于蛋白质合成的最新报道 - 聚合物偶联物的重点是耐氧49 - 52和光子介导的金属催化方法。39,51,53光化学方法的重要优势在于它们在轻度反应条件下进行时间和空间控制,而氧气耐受性对于可持续应用的发展至关重要。54 - 57但是,其中几种方法需要金属催化剂和金属污染物是针对生物医学应用的限制因素。在这方面,常用的黄烯电子受体For this reason, the metal-free organocatalyzed ATRP (O-ATRP) 58 – 61 mediated synthesis of protein – polymer conju- gates recently reported in seminal works by the groups of Sumerlin, 62,63 Matyjaszewski, 64 and Boyer 65 provides a new, powerful tool in the realm of oxygen tolerant bioconjugation.