2015 年,LHCb 合作组报告在衰变中观察到与粲偶素五夸克态一致的共振态[1]。实际上,衰变成的状态可能具有独特的特征[2]。最小夸克含量可被识别为,即粲偶素五夸克。虽然自夸克模型建立以来就预测了这种由四个夸克和一个反夸克组成的五夸克的存在[3–5],但对它的实验分析却花了很长时间。这种新粒子彻底改变了我们对于奇异状态的理解,这些状态无法包含在标准光谱学的传统夸克-反夸克和三夸克方案中。粲偶素五夸克被标记为,带电荷,并与粲偶素耦合。此外,它们是在重味重子领域观察到的第一个奇异状态。
我们报告了量子计算在重夸克偶极子光谱研究中应用的首次演示。基于重夸克和反夸克系统的康奈尔势模型,我们展示了如何在 IBM 云量子计算平台上用 VQE 方法制定和解决这个汉密尔顿问题。由于全局去极化噪声通道导致的误差通过零噪声外推法进行校正,结果与预期值高度一致。我们还推广了 VQE 方法,通过相对于基态的正交化来解决激发态。这种新方法已被证明适用于无噪声量子模拟器上的夸克偶极子系统,并且可以轻松应用于解决许多其他物理系统中的类似激发态问题。
基于输运模型,结合现实的三维体介质展开,研究了粲偶素定向流。非中心对称核-核碰撞可以产生具有对称破缺纵向分布的旋转夸克胶子等离子体(QGP)。在√sNN=200GeVAu+Au半中心碰撞中,粲偶素在初始硬过程中原始产生,它们主要被初始高温倾斜源解离,然后移出体介质,以保留介质的早期信息。原始产生的粲偶素的动量分布受QGP流体动力学膨胀的影响较小,因为其倾斜形状被稀释。这种有偏解离可以产生J/ψ和ψ(2S)的定向流,它们比轻带电强子和开重味子的值大得多。粲偶素定向流有助于量化原子核-原子核碰撞中 QGP 初始能量密度的快度奇数分布。