b.疾病。炭疽病是一种由炭疽杆菌杆状细菌引起的传染病,这种细菌自然存在于土壤中,通常影响家养和野生食草动物(牛、羊、山羊、鹿和其他食草动物)。炭疽病不具有传染性,但据报道,人与人之间传播的病例很少,并伴有渗出性皮肤炭疽病灶。受感染动物的产品(即肉或皮)是人类疾病的储存器。当炭疽孢子通过呼吸、食用受污染的食物/水或孢子进入皮肤割伤/擦伤以及通过注射进入人体时,人类就会被感染(见下文)。炭疽病最常见于中美洲和南美洲、撒哈拉以南非洲、中亚和西南亚、南欧和东欧以及加勒比地区的农业地区。一般而言,任何形式的炭疽病症状通常在接触后 7 天内开始出现。大规模接触的证据表明,由于吸入孢子的激活延迟,肺炭疽的潜伏期可能长达 60 天。
在 DNA 计算框架下使用 DNA 执行人工计算任务 [1]。因此,许多作者 [19, 27, 30, 11, 8] 探索了使用 DNA 作为人工神经网络基础的可能性。在本章中,我将介绍基于 DNA 的神经网络这一主题,特别是参考文献 [5] 中提出的方法。介绍将处于相对基础的水平,不要求读者具备生物化学方面的先验知识(因此针对的是来自物理学或计算机科学且对此类方法感兴趣的听众)。在简要概述 DNA 的生物学(第 2 节)和 DNA 计算(第 3 节)之后,我将介绍 DNA 神经网络的基本组成部分,即赢家通吃网络(第 4 节)和 DNA 门(第 5 节)。然后,我将介绍两种基于 DNA 的人工智能方法,即使用 DNA 的赢家通吃网络(第 6 节)和 DNA 储存器计算(第 7 节)。最后,我讨论了这种方法的一些优点和缺点(第 8 节)。第 9 节将进行总结。在我的演讲中,将遵循参考文献 [3](第 2 节)、[20](第 3 节)、[26](第 5 节)、[5](第 4 和 6 节)和 [12](第 7 节)。
20 #,通讯作者:21 Yijia Li,医学博士22 3601 Fifth Ave,7 楼,Falk Medical Building 23 宾夕法尼亚州匹兹堡 15213 24 电话:412-647-7228 25 传真:910-668-3088 26 电子邮件:liy33@upmc.edu 27 28 Bernard JC Macatangay,医学博士29 Scaife Hall 853,3550 Terrace St 30 宾夕法尼亚州匹兹堡 15261 31 电话:412-383-1272 32 传真:412-648-8457 33 电子邮件:macatangaybj@upmc.edu 34 35 资金:36 本研究部分由美国国家心肺血液研究所资助(U01-HL146208)、MWCCS 数据分析与协调中心(U01-HL146193)和 Rustbelt 艾滋病研究中心(P30 AI036219),以及匹兹堡大学医学院医学系的内部资助。本出版物的内容完全由作者负责,并不代表美国国立卫生研究院 (NIH) 的官方观点。42 43 关键词:炎症衰老;HIV-1;储存器;衰老相关分泌表型;CMV 44
自首次临床发现 HIV 感染以来,我们已经见证了人类为治愈或根除 HIV 感染而奋斗的四十年。各种已开发的药物,如核苷逆转录酶抑制剂 (NRTIs)、非核苷逆转录酶抑制剂 (NNRTIs)、蛋白酶抑制剂、整合酶抑制剂、杀微生物剂等,都存在已知的局限性,例如单独使用时会产生副作用和产生耐药性,以及隐藏的病毒储存器,这为纳米医学相关系统的参与打开了大门,特别是针对 HIV 感染的潜伏部位。纳米技术载体,如脂质体、树枝状聚合物、金属纳米颗粒、聚合物纳米胶囊/颗粒、表面活性剂和靶向载体,已成为广泛研究的一部分,用于在实际环境中递送 NRTIs、NNRTIs、杀微生物剂和 siRNA。四十年来,针对艾滋病毒感染的潜在治疗方法的研究处于领先地位,需要对纳米技术进行合理的评估,才能找到拯救生命的切实可行的解决方案。
摘要:背景:MYH6 变异是左心发育不全综合征 (HLHS) 最著名的遗传风险因素 (10%) 并且与心脏移植后生存率下降有关。MYH6 编码 α -肌球蛋白重链 (α-MHC),这是一种在新生儿心房中表达的收缩蛋白。因此,我们评估了具有 MYH6 变异的 HLHS 患者的心房功能。方法:我们使用二维斑点追踪超声心动图 (2D-STE) 对 I 期前心房功能进行回顾性、盲法评估。根据 AV 瓣膜解剖结构、性别和出生年份对变异携带者进行对照匹配。在手术干预之前从清醒患者中获取出生后研究数据。从心尖四腔视图测量右心房 (RA) 和右心室 (RV) 应变和应变率 (SR)。结果:共有 19 名患有 MYH6 变异的 HLHS 患者获得了超声心动图; 18 例分别与两个对照匹配,1 例只有一个对照。与对照相比,变异携带者的 RA 活性应变 (ASct) 降低 ( − 1.41%,IQR − 2.13,− 0.25) ( − 3.53%,IQR − 5.53,− 1.28;p = 0.008)。两组之间的 RV 应变无显著差异。仅在 MYH6 变异携带者中,RA 储存器应变 (ASr) 和导管应变 (AScd) 与心率 (HR) 呈正相关 (ASr R = 0.499,p = 0.029;AScd R = 0.469,p = 0.043)。 RV 整体纵向应变 (GLS) 以及 RV 收缩期应变 (VSs) 和应变率 (VSRs) 仅与对照组的 HR 相关(GLS R = 0.325,p = 0.050;VSs R = 0.419,p = 0.010;VSRs R = 0.410,p = 0.012)。结论:我们确定了与 MYH6 变异相关的功能后果,MYH6 变异是 HLHS 预后不良的已知风险因素。MYH6 变异携带者表现出 RA 收缩力受损,尽管变异携带者和对照组之间的 RV 功能没有差异。尽管 RV 舒张功能保留,但 MYH6 变异还与高心率下 RA 储存器和导管功能无效有关。因此,对于患有 MYH6 变异的 HLHS 患者,RA 功能障碍和心房“踢”减弱可能是 RV 衰竭和临床预后较差的重要原因。
存在于植物和动物体内,具有多种功能。一个基本功能显然是机械功能,为身体提供保护和支持。但生物材料也可以用作离子储存器(骨骼是一个典型的例子)、化学屏障(如细胞膜)、具有催化功能(如酶)、将化学物质转化为动能(如肌肉)等。本篇评论文章将重点关注主要(被动)具有机械功能的材料:纤维素组织(如木材)、胶原组织(如肌腱或角膜)、矿化组织(如骨骼、牙本质和玻璃海绵)。主要目标是介绍这些材料结构的当前知识以及这些结构与它们(主要是机械)功能的关系。本文不会讨论具有主动机械功能的肌肉,也不会讨论流体流动(例如血液循环)、摩擦和摩擦学(例如关节)或连接(例如昆虫的附着系统)等领域,尽管它们与力学有明显的关系。因此,对自然的看法将非常类似于对(块体)结构材料感兴趣的材料科学家的看法。
摘要 机械能因其丰富性而成为一种很有前途的环境能源。摩擦纳米发电机 (TENG) 是一种基于接触起电的有效机械能收集方法。现有的液体基 TENG 可以在不损坏表面的情况下稳定运行;然而,这些 TENG 的输出比固体基 TENG 小得多。值得注意的是,液体直接接触导电材料的液体基 TENG 可以产生超过几 mA 的电流。然而,液体储存器必须具有足够的体积,并且必须提供足够的空间让液体移动以产生电输出。为了确保紧凑轻巧的设计并在低输入频率范围内产生电输出,我们推出了一种移动棒式水基 TENG (MSW-TENG)。所提出的 MSW-TENG 可以分别产生高达 710 V 和 2.9 mA 的开路电压和闭路电流,并可用作自供电安全装置。本研究的结果可以促进TENG在日常应用中的实现。
利用 TRNSYS 软件对位于意大利南部那不勒斯的集中式太阳能混合供暖制冷系统进行了建模、模拟和分析,为期 5 年,该系统可满足典型意大利小区(由 6 栋住宅楼组成)的供暖、制冷和卫生用水需求。该电厂基于太阳能集热器与季节性钻孔储存相结合的运行;太阳能场也由与电能储存器相连的光伏太阳能电池板组成。采用太阳能吸附式制冷机进行制冷,同时使用冷凝锅炉作为辅助装置。从能源、环境和经济的角度评估了所提系统的性能,并与典型的意大利供暖制冷电厂的运行进行了对比,突出了以下主要结果:节省一次能源消耗高达 40.2%; (减少二氧化碳当量排放量达38.4%;降低运营成本达40.1%;简单回收期约20年)。关键词:钻孔储热,电能储存,
能源转型正在推动以可再生能源系统为基础、结合能源储存系统或能源载体的当地能源社区的大规模传播,以实现对化石燃料的独立性并限制碳排放。事实上,可再生能源的可变性和间歇性使其不足以满足终端用户全天的电力需求;因此,研究能源储存系统,考虑到其季节性储存行为(例如,能源-电力耦合、自放电损失和最低充电状态),对于保证适当的能源覆盖至关重要。这项工作旨在确定由意大利中部一座 220 千瓦小型水力发电厂供电的当地能源社区的离网运行,使用电池储能系统或采用 Calliope 框架的氢能储能系统。结果表明,氢储存系统由 137 千瓦电解器、41 千瓦燃料电池和 5247 千克 H 2 储存器组成,而电池系统储存系统的容量为 280 兆瓦时。虽然电池存储具有更好的往返效率,但其自放电损耗和最低充电状态限制涉及斜率更陡的放电阶段,因此由于能量功率比高而需要大量的经济投资。
晶体管的名称来自“传输”和“电阻”,它是微电子集成电路的基本元件,在纳米电子尺度上经过必要的改变后,它仍将保持原有的地位:它还非常适合放大等功能,它还执行一项基本功能,即根据需要打开或关闭电流,就像一个开关装置(图)。因此,它的基本工作原理可直接应用于逻辑电路(反相器、门、加法器和存储单元)中二进制代码的处理(0,电流被阻止,1,电流通过)。晶体管基于电子在固体中而不是在真空中的传输,就像旧式三极管的电子管一样,它由三个电极(阳极、阴极和栅极)组成,其中两个电极用作电子储存器:源极用作电子管的发射极灯丝,漏极用作集电板,栅极用作“控制器”。这些元件在当今使用的两种主要晶体管类型中以不同的方式工作:先出现的双极结型晶体管和场效应晶体管 (FET)。双极晶体管使用两种类型的电荷载体,电子(负电荷)和空穴(正电荷),并由相同掺杂(p 或 n)的半导体衬底部分组成