各种设施的能源供应发展的有前途的领域之一是,基于传统和可再生能源的能源自我足够的复合物和自己的加热系统有可能。然而,众所周知,由于白天的时间积累的随机性和不均匀性质,这些来源的能量是复杂的。因此,有必要提供这些系统的不间断操作。可以通过将传统的电源源整合到其中以及应用各种能源蓄能器的情况下提供此类组合系统的运行稳定性和可靠性。对各种热量积累方法的分析表明,最有希望的热蓄能器类型是累积材料的相位或化学转化的热蓄能器[1,2]。此类蓄能器在热蓄能材料的质量单元中提供高密度的累积能量,并使维持稳定的累加器偏置温度成为可能。许多出版物[1-4]回顾了具有相变的热蓄能器中使用的现有热量存储材料,并考虑了其在来自不同热源的热量积聚中的应用范围。Pereira and Eames提出了热量温度在0到250°C范围内的相变温度的概述,并评估了热量储存热量单元的实用设计[3]。所研究的材料可在不同的冷却液温度下使用来自不同类型来源的热量蓄热剂温度。Kenisarin [4]总结了先前关于过渡温度,熔点,热容量和热导率的研究结果,许多有机物质的长期特征,它们的组成和化合物。 Sharma等人[1]介绍了当前的热能研究和储存热量蓄热器中的热能概述,这些蓄热量累加器中广泛用于热泵,太阳能技术和航天器热控制程序,用于加热和冷却建筑物的潜热储存系统。 du et al [2]根据工作温度范围(-20°C至+200°C)提供了最新的相变材料(PCM)及其用于加热,冷却和发电的应用。 审查表明,在低温和中等低温范围内,PCM可实现高达12%的能源节省,而冷却负载的减少最高可实现80%。 用于加热系统的PCM存储可以将效率从26%提高到66%。 Pereira等[5]研究了热量积累的几何形状和相变的构型,并进行了数值和实验研究,以评估参数的影响,例如入口温度和质量流量。 表明,最合适的存储材料是熔点在0 O C到60 O的范围内的储存材料。许多研究[6-10]用于研究胶囊型电池PCM相变的热量积累过程。 Suganya等,Agyenim等,Kalaiselvam等[6,7,8]介绍了石蜡熔化过程的分析,石蜡的熔化过程被放置在圆柱形胶囊中,用于从太阳能收集器中热能积累的系统中。Kenisarin [4]总结了先前关于过渡温度,熔点,热容量和热导率的研究结果,许多有机物质的长期特征,它们的组成和化合物。Sharma等人[1]介绍了当前的热能研究和储存热量蓄热器中的热能概述,这些蓄热量累加器中广泛用于热泵,太阳能技术和航天器热控制程序,用于加热和冷却建筑物的潜热储存系统。du et al [2]根据工作温度范围(-20°C至+200°C)提供了最新的相变材料(PCM)及其用于加热,冷却和发电的应用。审查表明,在低温和中等低温范围内,PCM可实现高达12%的能源节省,而冷却负载的减少最高可实现80%。用于加热系统的PCM存储可以将效率从26%提高到66%。Pereira等[5]研究了热量积累的几何形状和相变的构型,并进行了数值和实验研究,以评估参数的影响,例如入口温度和质量流量。表明,最合适的存储材料是熔点在0 O C到60 O的范围内的储存材料。许多研究[6-10]用于研究胶囊型电池PCM相变的热量积累过程。Suganya等,Agyenim等,Kalaiselvam等[6,7,8]介绍了石蜡熔化过程的分析,石蜡的熔化过程被放置在圆柱形胶囊中,用于从太阳能收集器中热能积累的系统中。由于进行了研究,得出的结论是,在这种类型的蓄能器中,PCM的导热率具有
Company Borqs Technologies,Inc。(“ Borqs”或“ Company”)成立于2007年,成立于英国维尔京群岛,在加利福尼亚州圣克拉拉设有美国办事处,在全球范围内拥有亚洲的研究和开发中心,是一个端点的无线产品解决方案,用于移动电远程电视和互联网的无线产品解决方案(iot of Things)。Leveraging its proprietary Android- based cloud-enabled commercial-grade platform software, the Company provides worldwide contracted design, development and manufacturing services for leading chipset manufacturers, including Qualcomm, Intel, Freescale and Marvell, multinational original equipment manu facturers, such as LG Electronics, Micromax, Acer, Dell, Motorola, Vizio and Coolpad, as well as major mobile network operators around the Globe,计数AT&T,Sprint,Verizon,China Mobile,Orange,Reliance Jio,Vodafone,Telefonica,Telcel和Claro。在中国,印度,美国,日本和韩国的存在中,Borqs拥有330多名员工,并将其产品部署在四大洲。Trading on NASDAQ under the symbol BRQS since its August 2017 reverse merger transaction with a Special Purpose Acquisition Company (SPAC) formerly known as Pacific Special Acquisition Corp., Borqs is uniquely positioned to exploit the rapidly growing IoT and 5G technology trends as possibly the only independent publicly-listed in the U.S. provider of innovative end-to-end solutions for the ubiquitous Android operating system 平台。在2021年10月,该公司在Holu Hou Energy LLC(HHE)(今天49%)中获得了51%的权益,该公司是夏威夷领先的太阳能公司。HHE最近也进入了加利福尼亚市场,这是一个数十亿美元的市场。HHE最近与Lendlease签订了一项大型多年合同,Lendlease是一个领先的房地产和投资集团,管理近8,000套美国陆军在瓦胡岛的房屋,在珍珠港的军事基地的住宅院子上安装其太阳能加储存系统。
新闻稿 I 塞维利亚 I 2023 年 1 月 欧盟资助的 CEEGS 项目正在开发一种新概念,该概念将增加可再生能源 (RES) 的储能能力,同时促进二氧化碳储存技术的部署,从而支持《欧洲绿色协议》的实施。 欧盟的长期气候战略和《欧洲绿色协议》强调了可再生能源对欧洲大陆脱碳目标的关键作用。 然而,风能和太阳能等可再生能源 (RES) 需要部署大规模储能系统来提高供应安全性。 此外,国际能源署《2020 年世界能源展望》和最近的 IPCC 报告强调,如果不在水泥、铁、钢或化肥生产等难以脱碳的行业大量捕获二氧化碳,就无法实现《巴黎气候协定》和欧盟目标。 考虑到当前的能源危机,还必须实现可再生能源组合多样化,更多地使用地热能等稳定能源。因此,由“地平线欧洲”资助的 CEEGS 项目正在开发一种创新的基于二氧化碳的电热能和地质储存系统。该概念旨在通过同时进行二氧化碳地质储存和地热提取,实现跨临界二氧化碳循环与地下能源储存的结合,从而提高碳捕获、利用和储存 (CCUS) 和可再生能源储存技术的效率和成本效益,同时降低对环境的影响。CEEGS 打算将理论概念转化为实验室规模的成熟技术,为能源转型提供跨部门的技术解决方案。CEEGS 于 2022 年 11 月底举行了启动会议,该项目将持续三年。CEEGS 由“地平线欧洲”计划资助,预算为 2,992,060 欧元,由塞维利亚大学协调。该联盟由来自 5 个欧洲国家的 10 个合作伙伴组成,汇集了能源系统、能源存储、地质学、地热系统、二氧化碳地质储存和社会科学等多学科技能,并将利用欧洲领先的地质协会和能源领域行业的支持。
北方泥炭地是碳循环的重要生态系统,因为它们将世界的1/3储存在全球陆地的约3%中。这种高碳存储能力使它们成为全球气候变暖引起的增加碳排放的关键缓解策略。在泥炭地等高碳储存系统中,土壤动物群落是有机物和营养循环的次要分解的,这表明它们在碳循环中起着重要作用。实验表明,变暖会以可能将泥炭地从碳水槽转移到来源的方式影响植物和微生物群落。尽管以前的研究发现气候变化操纵对土壤群落的影响可变,但预计变暖将主要通过降低水分含量来影响土壤社区的组成,而升高的CO 2大气浓度只有间接而弱,而弱的大气浓度则是如此。在这项研究中,我们使用了一个大型泥炭领域的实验来测试土壤微动脚类(Oribatid和Mesostigmatid mite,以及Collembolan物种的丰度,丰富性,丰富性和社区成分)对一系列实验性温暖温度(在0°C和+9°C之间的跨度)中响应4年,以响应4年的环境。 (云杉)实验。在这里,我们发现变暖显着降低了表面泥炭湿度,这又减少了物种微促动物的丰富度和丰度。特别是在较低的湿度水平下,oribatid和中骨螨,胶状和整体微促动物的丰富度显着降低。此外,在较高的水分水平下,大量的微肢体数量增加。在一起分析或分开时,均未影响微量关节脚架,除了在变暖下显着增加的中骨质体。 在社区层面,随着时间的流逝(除Collembolans除外),社区的变化很大,并且水分是解释社区物种组成的重要驱动力。 我们期望云杉实验治疗对土壤动物生物多样性的累积和互动效应继续出现,但我们的结果已经表明效果是均未影响微量关节脚架,除了在变暖下显着增加的中骨质体。在社区层面,随着时间的流逝(除Collembolans除外),社区的变化很大,并且水分是解释社区物种组成的重要驱动力。我们期望云杉实验治疗对土壤动物生物多样性的累积和互动效应继续出现,但我们的结果已经表明效果是
排放如果有效使用(Eurostat,2017年)。如今,生产的能源的大约7%来自可再生能源(Ren21,2016)。 由于全球对碳相关环境问题的认识以及绿色技术和政府支持可再生能源部门的努力的份额不断增长,预计该价值将在未来几年增长。 但是,考虑到RES的间歇性特征,可再生能源产生的比率增加可能会导致电网中的几个问题。 实际上,它的发电部门在当地受到天气模式(IEC,2011年)和白天/夜间周期的影响。 因此,使用电能量存储(EES)被视为支持可变res集成的一种潜在方法(Luo等,2015)。 EES系统还可以提供其他有用的服务,例如剃须,负载转移和支持智能电网的实现(Luo等,2015)。 在对2030年的电力储存路线图研究中,如果各国在能源系统组合中的可再生能源份额增加一倍,则电力存储设施往往会增加三倍(Irena,2017年)。 ees不是一项技术,而是指技术的投资组合。 可以根据能量转换和存储来对能量存储进行分类。 主要用于大规模的能量存储(Irena,2017)。 抽水储存(PHS)在2017年中期全球安装的电气存储容量为96%,并以平流和压缩空气的空气储能技术(IEC; IRENA,2017)。如今,生产的能源的大约7%来自可再生能源(Ren21,2016)。由于全球对碳相关环境问题的认识以及绿色技术和政府支持可再生能源部门的努力的份额不断增长,预计该价值将在未来几年增长。但是,考虑到RES的间歇性特征,可再生能源产生的比率增加可能会导致电网中的几个问题。实际上,它的发电部门在当地受到天气模式(IEC,2011年)和白天/夜间周期的影响。因此,使用电能量存储(EES)被视为支持可变res集成的一种潜在方法(Luo等,2015)。EES系统还可以提供其他有用的服务,例如剃须,负载转移和支持智能电网的实现(Luo等,2015)。在对2030年的电力储存路线图研究中,如果各国在能源系统组合中的可再生能源份额增加一倍,则电力存储设施往往会增加三倍(Irena,2017年)。ees不是一项技术,而是指技术的投资组合。可以根据能量转换和存储来对能量存储进行分类。主要用于大规模的能量存储(Irena,2017)。抽水储存(PHS)在2017年中期全球安装的电气存储容量为96%,并以平流和压缩空气的空气储能技术(IEC; IRENA,2017)。传统的抽水储存系统在不同的高程下使用两个水库,并且挤压空气技术需要地下储物腔,例如
3.2.4.1 讨论 — 适用于 DED 的电弧工艺表面上基于气体保护工艺,即 GTA、PA、PTA 和 GMA 及其变体。3.2.5 建成状态,adj— 参见建成状态、ISO 52900 和 3.3。3.2.6 构建平台,n— 参见构建平台。ISO/ASTM 52900 3.2.6.1 讨论 — 在 ISO/ASTM 52900 中,机器的构建平台被定义为提供一个表面的底座,零件的构建在该表面之上,并在整个构建过程中受到支撑。在 DED 中,构建平台也可以是需要修复的组件,也可以是非平面的。3.2.7 捕获效率,n— 从沉积头喷出的粉末中融入构建结构的比例。通常以百分比表示。 3.2.8 载气,名词——通常为惰性气体,用于将粉末从沉积头运送到熔池,在某些系统中也用于辅助将粉末从储存系统运送到沉积头。 3.2.9 铸件,名词——一根金属线,松散地抛在地板上的一段金属线所形成的圆的直径。 3.2.10 包层,名词——参见包层,AWS A3.0/A3.0M。 3.2.11 横流,名词——通常为惰性气体,方向垂直于受保护镜头的光轴。 3.2.12 循环,名词——单个循环,其中一个或多个组件、特征或修理在机器的构建空间中分层构建。 ISO/ASTM 52900 3.2.12.1 讨论——DED 非常适合修理、特征添加和再制造应用。在本指南中,无论是构建完整部件、其一部分还是修复,术语“DED 构建循环”和“DED 沉积循环”的使用都是同义词。 3.2.13 缺陷,名词——参见缺陷,术语 E1316。 3.2.14 沉积头,名词——向熔池输送能量和原料的装置。 3.2.15 沉积速率,名词——参见沉积速率,AWS A3.0/A3.0M。 3.2.16 定向能量沉积 (DED),名词——参见 ISO/ASTM 52900 和 3.3。 3.2.17 进料,名词——将材料(线材或粉末形式)输送到熔池的机制。 3.2.18 填充金属,名词——参见填充金属,AWS A3.0/A3.0M。 3.2.19 裂纹,名词——参见裂纹,术语 E1316。 3.2.20 焦斑,名词——参见焦斑,AWS A3.0/A3.0M。 3.2.21 功能梯度材料,名词——在成分或结构(或二者)上随空间变化的沉积材料,导致材料性质的相应变化。 3.2.22 气体金属电弧(GMA),名词——参见气体金属电弧焊(GMAW),AWS A3.0/A3.0M。 3.2.22.1 讨论——AWS 定义中的“焊接”一词表示两块或多块材料的连接。由于 DED 不是这种情况,因此删除了“焊接”一词。其余术语描述电弧物理学。
稻米在菲律宾人的生活中扮演多方面的角色,包括营养,经济,文化和社会层面。菲律宾有许多障碍要克服,以维持水稻行业的粮食安全和可持续性。在水稻供应链中有明显的收获后损失,如60%至65%的稻米转化率向铣削米饭所见。收获后的损失发生在收获与人类消费时刻之间。它们包括农场损失,例如粒状阈值,绞滴和干燥以及在运输,存储和加工过程中沿链条的损失。后期手术损失或浪费了大约三分之一的水稻。大米的储存损失在后票的损失中起着至关重要的作用。安全的粮食储存系统在确保粮食安全方面起着至关重要的作用,尤其是对于完全依赖耕种的人们而言。减少大米的后损失可能是增加粮食供应,减轻自然资源的压力,消除饥饿并增强农民的生计的一种可持续方式,尤其是在发展中国家。它的重要性超出了全国各地的饮食习惯,生计和社交互动的范围。鉴于其作为主食食品的地位,确保稳定且足够的大米供应对于菲律宾的粮食安全至关重要。米粒是通过季节性生产的,但它们的消费量是恒定的。因此,必须存储大米。基础架构差和缺乏获得现代存储技术的访问促成了这一问题。稻米生产或分配中的任何中断都会对人口的福祉产生重大影响。国际水稻研究所(IRRI)培训手册提到,菲律宾从帕迪(Palay)到米饭的转化率仅为60%(60%)。收获后的OSSE可以在水稻供应链沿着各个阶段发生,从而降低效率和经济损失。收获后的处理和存储设施不足可能会导致大米造成的大米损失,因为变质,害虫和霉菌。应对这些挑战需要一种全面的方法,涉及利益相关者之间的合作,基础设施和技术的投资,采用可持续的环保最佳实践,用于收获后管理,实施质量控制措施,促进透明度和整个供应链中的透明度和信息共享。此外,建立对环境和气候风险的韧性的策略对于确保水稻供应链的长期可持续性至关重要。在任何供应链中都不可避免地浪费和破坏。随着时间的流逝,处理,污染和恶化等因素可能会导致损失,尤其是如果无法正确管理和缓解,则可能导致损失。在菲律宾实现粮食安全和大米的可持续性,需要采用多方面的方法来应对整个水稻供应链的各种挑战。升级收获后的基础设施,包括存储设施,干燥设施和加工厂,以减少损失并保持谷物质量。鼓励收养为农民提供适当的收获后处理技术的培训和支持,以最大程度地减少变质和浪费。