美国驻日陆军基地 2024 年暑期实习计划 美国驻日陆军基地正在座间营和吴市地区举办实习计划。该计划旨在为寻求在动态工作环境中获得经验、接触英语会话和美国文化的日本大学生提供绝佳机会,同时与来自日本和美国的美国军事人员和工作人员一起工作。通过亲身实践的工作经验、入职培训、实地考察和演示,参与者可以加深对美国军事设施内各种职责的了解。实习期:2024 年 8 月 5 日至 23 日(周一至周五,8 月 12 日日本假期除外)职位和地点:请参阅附件“2024 年暑期实习职位列表”了解可用的实习职位。1 至 5 号职位将位于广岛县(吴市、秋月市或川上市),6 至 30 号职位将位于神奈川县(座间营)。资格:所有申请人必须符合以下标准。
摘要 — 电池储能系统 (BESS) 被认为是电力系统中可再生能源容纳的有效解决方案。然而,大型 BESS 的剩余容量和最大功率受到电池性能下降和热失控 (TR) 传播等热诱发事件的严重影响。在现有技术研究中,热诱发事件对 BESS 服务性能的影响尚未得到很好的建模,导致电力系统的可靠性估计相对过于乐观。本文研究了考虑电池性能下降和 TR 传播的大型并网 BESS 的可靠性及其对电力系统整体可靠性的影响。为了量化 BESS 的时变性能,构建了一个多状态模型。所提出的模型描述了 BESS 内部电池的老化过程,结合了连续 TR 和周围电池因吸热而导致的性能下降的综合影响。基于蒙特卡罗方法,模拟了反映间歇性风力发电和波动负载不确定性的场景。建立了储能系统最优调度模型,提出了求解算法,计算了储能系统在实时性能范围内考虑热工条件的调度结果,并通过实例验证了所提模型和技术的有效性。
在这项工作中,我们评估了 454 种盐水合物和 1073 种独特的水合反应,以寻找适合家用储热的材料。根据盐和反应的稀缺性、毒性、(化学)稳定性和能量密度(> 1 GJ/m 3)以及与 3 种用例场景的一致性对其进行了评估。这些场景基于空间供暖(T > 30 ◦ C)和热水(T > 55 ◦ C)通过排放提供,以及建筑环境中可用于充电的热源(T < 160 ◦ C)。在所有评估的材料中,只有 8 种盐和 9 种反应(K 2 CO 3 0 – 1.5、LiCl 0 – 1、NaI 0 – 2、NaCH 3 COO 0 – 3、(NH 4 ) 2 Zn(SO 4 ) 2 0 – 6、SrBr 2 1 – 6、CaC 2 O 4 0 – 1、SrCl 2 0 – 1 和 0 – 2)满足所有标准。假设找到合适的稳定方法,则需要另外 4 种盐和 13 种反应(CaBr 2 6-0、CaCl 2 6-0、6-1、6-2、4-0、4-1、4-2、LiBr 2-0、2-1、2-0、LiCl 2-0、2-1、ZnBr 2 2-0)。从这些选择中,只有 2 种盐/反应(NaI 和 (NH 4 ) 2 Zn(SO 4 ) 2 )尚未在文献中得到广泛研究。此外,许多经过充分研究的盐水合物,如 MgSO 4 和 LiOH,均未通过我们的筛选。这项工作强调了适合家庭应用的材料的稀缺性,以及扩大未来评估范围的必要性。
钢合金作为经济的遏制材料候选材料,易受到 TES 系统中熔融介质的热腐蚀和氧化 [3-7, 9-22]。碳酸盐、氯化物-碳酸盐和氯化物-硫酸盐的熔融共晶混合物也被视为具有高热容量和能量密度的 PCM 候选材料 [3, 23]。腐蚀产物的溶解度和合金的氧化电位是影响遏制材料和熔融介质之间兼容性的关键因素 [24]。在钢合金中,材料表面保护性氧化物的形成可提高抗腐蚀能力,其中材料化学、温度和气氛决定了结垢速率 [25, 26]。然而,在熔盐中,由氧化铬等成分组成的保护层通常会通过熔剂溶解到盐混合物中。一旦氧化膜被去除,暴露金属中最不活泼的成分就会受到侵蚀 [24, 27, 28]。例如,铁基合金在 450°C 下的 ZnCl 2 -KCl 中的腐蚀是由于氧化膜的分离和剥落造成的[29]。
为波兰最大的城市之一供热和供电并配备 TES 系统的三座城市 (DHS) 均采用了蒸汽缓冲系统。所分析的三座 TES 的容量从 12,800 到 30,400 立方米不等,水箱直径从 21 到 30 米不等,壳体高度从 37 到 48.2 米不等。在 TES 水箱中使用蒸汽缓冲系统的主要目的是保护其中储存的水不会通过位于水箱顶部的调压室和安全阀吸收周围大气中的氧气。这里介绍的用于向水箱注入和排出热水的上部孔口和用于循环水的吸水管的技术解决方案使我们能够在蒸汽缓冲系统中节省大量能源。上部孔口和吸水管末端均可通过使用浮筒移动。由于采用了该技术解决方案,在 TES 水箱上部的上部孔口上方形成了稳定的绝缘水层,从蒸汽垫空间到水箱中储存的热水的对流和湍流热传输受到显著限制。最终,与 TES 水箱中蒸汽垫系统的经典技术解决方案(即上部孔口和循环水管)相比,热通量减少了约 90%。本文提出的简化分析及其结果与蒸汽垫空间到 TES 水箱上部储存的热水的热流实验数据的比较充分证实了所用热流模型的有效性。
硅藻土、26 – 28 海泡石、29 凹凸棒石 30,31 和膨胀珍珠岩 32,33 也被用作支撑基质。膨润土具有多层结构,是一种常见的工业粘土,例如蒙脱石族粘土矿物。膨润土因其良好的物理和化学性质,被广泛用作功能填料、粘结剂、触变剂和催化剂。此外,膨润土具有良好的化学和热稳定性、优异的吸附特性和低廉的价格,使其适合于合成形状稳定的复合 PCM。在本文中,通过真空浸渍法制备了一种由 LA/Na-bentonite-1 制成的新型复合 PCM,它具有高潜热存储能力和适合节能系统的相变温度。以天然膨润土和 LA 为支撑材料
(7) 其他 A. 投标开始前,必须提交《资格审查结果通知书》复印件。如已提交,则无需再次提交。 B. 如果由代表或其他代理人提交复印件,则必须在投标开始前提交《委托书》。 C. 邮寄投标的,必须清楚写明公司名称、投标日期和时间、投标事项,并用红色写明“投标文件附件”,并于 8 月 27 日星期二下午 5 点之前将投标书邮寄至以下地址。此外,我们将通过邮件提前通知您的出价。 如果您希望参加投标,您必须于8月20日星期二下午5点之前通过传真或其他方式提交市场价格调查文件。 E 投标人必须接受“驻地使用标准合同”和“投标及合同指南”(在东部陆军会计司令部网站(https://www.easternarmy.jp/gSdf/eae7/kaikei/eafin/index html)或泷原驻地会计司令部办公室公布)后才能参与。投标人提交投标即视为已根据“关于排除有组织犯罪的公约”作出承诺。投标中应包含以下句子以表示接受:“本公司(我(如果是个人),本组织(如果是组织))在此承诺关于排除有组织犯罪公约中规定的事项。”如果投标人拒绝根据上述“关于排除有组织犯罪的公约”提交承诺,则该投标人将无法参与投标。G 如果在初次投标中有通过邮寄方式提交投标的投标人,则重新投标的时间如下。
但是,如果您符合以下任何一项,您将无法参加此考试。 1. 不具有日本国籍的人。2. 根据自卫队法第38条第1项的规定,不能担任防卫省职员的人。
摘要:减少全球二氧化碳排放量需要采取跨部门措施来减少化石能源消耗并加强可再生能源的扩张。实现这一目标的一个要素是热能存储系统。由于它们具有时间解耦操作,因此可以提高各种工业和发电厂流程中的系统效率和灵活性。在电力和热力领域,此类解决方案已在商业上可用于大规模应用或专注于各种研发项目,但在运输领域则大多是新事物。通过将现有概念专门转移到电池电动汽车的供热要求,也可以在运输领域实现效率改进。其想法是通过先前电加热的热能存储系统在寒冷季节为车内提供所需的热量。因此,可以节省电池容量,并增加车辆的有效行驶里程。这一概念的基本先决条件是高系统存储密度和高性能,这必须与商用电池供电的 PTC 元件相适应。与大规模应用相比,这带来了新的挑战和设计解决方案,最终需要在车辆典型规格下进行概念验证和实验测试。首次开发并建设性地实现了一种基于陶瓷蜂窝、集成加热丝和双壁隔热储存容器的新型热能存储系统。该存储系统满足供热的所有要求,达到了高系统存储和功率密度,并且由于其高灵活性,允许双功能操作使用:循环存储和传统加热模式。在集中存储操作中,在充电期间通过加热丝电产生高温热量,并通过热辐射有效地传输到陶瓷蜂窝。在放电期间(驾驶),存储的热能由旁路控制系统用于在高热输出下在规定温度下加热内部空间。系统测量活动和成功的模型验证证实,充电期间电加热功率高达 6.8 kW,放电期间供热功率超过 30 分钟,热输出功率为 5 kW。尽管目前基础设施和试验台存在限制,但仍可达到 155 Wh/kg 的高系统存储密度,且放电出口温度恒定。与电池供电的加热系统相比,所开发的热能存储系统的实验结果证实,由于其高性能、操作灵活性和低成本材料,该系统具有出色的竞争力。
