建筑物的供暖和制冷需求需要电网提供大量能源。极端温度或其他天气事件可能会增加建筑物的供暖或制冷需求,以维持宜居的室内环境,从而进一步给电网带来压力。当这种能源需求的增加蔓延到整个电网时,电网运营商需要增加能源供应,通常是通过使用所谓的峰值发电厂。这些发电厂通常是燃烧天然气或柴油的燃气轮机。因此,与这些发电厂相关的排放量高于大多数基载电网能源发电排放量。建筑物对电网的峰值能源需求可以通过使用储能系统来降低,这些储能系统在建筑物能源需求高涨的时期启动,以替代或补充电网能源。供暖和制冷可以从热能储存 (TES) 中受益。集成到热泵 (HP) 系统中的 TES 可以降低建筑物在极端温度条件下的峰值能源需求。大规模部署时,HP-TES 的累积效应可能会在关键时刻减少电网需求并减少对峰值发电厂的需求。本研究建立了一个框架,可以在此框架内大规模研究干预技术(如 TES)对电网排放(CO 2 、NO x 和 SO x )的影响。作为案例研究,分析了美国南部选定家庭的住宅 HP-TES。
印度尼西亚是一个热带国家,全年太阳辐射强度相对稳定,每天 10 到 12 小时,平均 4.8 kWh/m²/天。这一巨大潜力可用于加热沐浴用水。基于太阳能集热器的热水技术现已在商业市场上广泛使用。此外,太阳辐射的热能存储是使用显热进行的,需要很大的体积。假设下午才用水,那么加热后的水就会储存在管子里。在几项研究中,人们使用了相变材料 (PCM) 来最大限度地提高太阳辐射的热能存储 (TES)。此外,PCM 使用潜热来吸收和释放热量。这会根据太阳能集热器产生的水温进行调整,达到 70°C。因此,使用的潜在 PCM 是固体石蜡,它在市场上随处可见,熔化温度为 40° 至 50°C。这项研究是在使用 80 厘米 x 50 厘米平板集热器的太阳能热水系统上进行的,并使用石蜡进行热能储存。同时,热交换器使用一根直径为 1 英寸的管子串联起来,管长为 50 厘米,有 36 根棒。所用石蜡的质量为 15 公斤或 17.7 升。此外,测试是在水的流速变化下进行的,即:2、3 和 4 升/分钟,太阳辐射为:997.5 W/m²、1183 W/m² 和 1399.8 W/m²。从结果来看,在 15 公斤的 PCM 石蜡中,热能储存过程耗时 3.2 小时,总储存能量为 3.6 MJ。此外,1,399.8 W/m² 的太阳辐射被用作能源,流速为 4 升/分钟的水作为热传递介质。因此,这种辐射对于向 PCM 的传热过程有非常显著的影响,而 2 到 4 lpm 的流速则没有。
为了实现更大的经济稳定性,Växjö 的 VEAB 等热电联产电厂运营商积极寻找一种新的商业模式,这种模式既能与现有设施兼容,又能增加公司的总收入。这些过程包括氢气生产和生物化学产品,如生物聚合物和生物燃料。然而,这些过程也会产生大量的热量,需要加以处理。或者,额外的热存储容量可以让工厂更有选择性地选择何时生产这些热量以最大化利润。因此,重要的是研究实现这一目标的不同方法,包括传统方法(例如对流冷却)和替代方法(不同的大型地下热存储)。还研究了湖源冷却,以确定它是否可以取代对流冷却作为冷却工厂废热的方法。技术分析表明,替代方法肯定是有希望的,尽管需要更多的土地使用(BTES 需要 36 000 平方米,而对流冷却系统需要 750 平方米),并且在决定适当的方法时必须解决一些限制。此外,研究发现,通过增加 BTES 系统的规模,单位热容量的热量损失会减少,而增加钻孔深度会降低系统的整体热量损失。经济分析表明,当仅用于处理废热时,替代方法的成本要比对流冷却高出几个数量级,替代方法的成本几乎是对流冷却的 6 倍。如果可以发现 BTES 系统的额外利用率,或者潜在需求可能使 BTES 系统成为处理热电联产电厂运营商业务扩展带来的多余热量的更具吸引力的选择,那么未来肯定有机会使 BTES 系统成为更可行的选择。
首先开发了各种 PTES 和太阳能-PTES 概念的简单热力学模型。结果用于确定哪些系统最有前景并值得进一步研究。然后建立了更详细的技术经济模型。技术模型捕获了系统中每个组件的性能。特别是,需要热交换器的质量表示,并且模型已根据从文献中获取的实验结果成功验证。对每个组件的非设计性能进行了建模,从而能够评估可变部分负载和环境温度下的 PTES 和太阳能-PTES 性能。通过从文献中获取每个组件的成本相关性来估计系统资本成本和平准化存储成本 (LCOS)。每个组件都使用了几个相关性,这使得能够使用蒙特卡罗技术来计算可能的成本及其不确定性。该分析强调了热交换器设计对系统性能的重要性,并且需要高效率值(超过 90%)才能实现合理的往返效率。研究发现,这种高效率还可以最大限度地降低终身成本 (LCOS)。
太阳能灶是发展中国家的一个好选择,因为这些国家的太阳能潜力很大,可用于环保烹饪并减少森林压力。然而,它们仍然受到太阳间歇性的影响。为了解决这个问题,在本文中,我们制造并试验了一种集成了麻疯树油作为储热材料的箱式太阳能灶。该设计经检验的最高停滞温度为 157.7˚C。记录的烹饪功率在 78.4 到 103.6 W 之间消失,而热效率从 41.26% 到 58.78% 不等。包括充电和放电在内的能量转换循环测试表明,通过灶具损失的 91.18% 的热量可以被储热装置回收,并且在阴天或温度扰动期间,大量的热量会被恢复到系统中。
建筑基础设施中的供暖和制冷系统使用传统材料,这些材料会产生大量的能源消耗和浪费。相变材料 (PCM) 被认为是一种很有前途的热能储存候选材料,可以提高建筑系统的能源效率。在这里,我们设计和开发了一种新型的盐水合物基 PCM 复合材料,它具有高储能容量、相对较高的热导率和出色的热循环稳定性。通过使用葡聚糖硫酸钠 (DSS) 盐作为聚电解质添加剂,增强了 PCM 复合材料的热循环稳定性,这显著减少了盐水合物的相分离。通过添加各种石墨材料和硼砂成核剂,复合材料的储能容量和热导率得到了增强。DSS 改性复合材料的热循环稳定性显著提高,超过 100 次热循环都没有降解。最终的 PCM 复合材料相对于纯盐水合物的能量储存容量增加了 290%,热导率增加了约 20%。此外,所开发的 PCM 复合材料可以大规模生产,并有可能改变建筑基础设施中供暖/制冷系统的未来。
2.2 供热管道传热动力学模型供热管道动态特性是指同一管道内热水入口温度和出口温度与时间的耦合关系,是描述热网蓄热特性的关键。在管道内,入口处的水温变化会缓慢延伸到出口,温度传递的延时基本与热水流过管道的时间相同。另外,由于管道内热水温度与环境温度存在差异,在流动过程中会有热量损失,导致水温下降。供热管道横截面积如图3所示,其中Δt为调度周期长度。
• 热能蓄积和储存系统 (TES) 可以解决热能消耗高峰期 DHS 系统运行不稳定的问题,以最高效率保证锅炉设备稳定运行,减少电力和化石燃料的消耗,并显著减少对环境的有害排放。此外,使用 TES 可以吸引可再生能源系统和二次能源资源的多元平衡。
摘要:分布式热能储能(DTES)为实现城市电热综合能源系统(UEHIES)可持续经济运行提供了特定的机遇,但面向分布式应用的储能模型理论构建和配置方法仍面临挑战。本文分析了DTES内部储热介质与热网传输介质之间的吸放热过程,细化了传热功率与温度特性的关系,建立了考虑介质温度特性的水储热与电加热器相变储热模型。结合热网温度传递时延特性,提出了面向UEHIES的DTES两阶段优化配置模型。结果表明,在配置方法中考虑温度特性能准确反映DTES的性能,提高风电利用率,提高能源设备运行效率,降低系统成本。
1-D PCM 棒的横截面积,[m 2 ] 比热,[J kgK ⁄ ] 运行成本,[$ yr ⁄ ] 电价,[$ kWhr ⁄ ] 管材成本,[$ kg ⁄ ] PCM 材料成本,[$ kg ⁄ ] 管内传热系数,[W m 2 K ⁄ ] 总时间步数 电导率,[W mK ⁄ ] 管总长度,[m ] 平准化能源成本,[$ MWh ⁄ ] PCM 潜能,[kJ kg ⁄ ] 径向网格数 管长网格数 努塞尔特数 普朗特数 传热速率,[W] 传热速率,[W] HTF 总质量流速,[kg s ⁄ ] 环内半径,[m] 环状几何中的移动凝固前沿,[m]环形圆柱体 PCM 的热阻,[ m ] 圆柱体 PCM 内的热阻,[ KW ⁄ ] 导热流体内的热阻,[ KW ⁄ ] 雷诺数 温度,[ ℃ ] 边界冷却温度,[ ℃ ] 相变材料熔化温度,[ ℃ ] 管与圆柱体 PCM 之间的界面温度,[ ℃ ] 管内导热流体的速度,[ ms ⁄ ] 管壁厚度,[ mm ] 壳体厚度,[ mm ] 一维 PCM 棒的长度,[ m ] 每天运行小时数,[ hr ] 凝固时间,[ hr ] 移动凝固前沿,[ m ] 设备总寿命,[ yr ] 环形圆柱体 PCM 的轴长,[ m ] 两个坐标系之间的凝固前沿比率 密度,[ kg m 3 ⁄ ] 粘度,[ Pa ∙s ] 潜能储存系统的有效性矩形几何结构显热能分数因子 圆柱形几何结构显热能分数因子 差值或增量步长 泵效率