图 1. Pt 电催化剂的设计和表征。(a)Pt 基 LCB 中 CO 2 转化过程示意图。(b)CO 2 、Li 和 Li 2 CO 3 在 Pt 表面不同取向上的吸附行为侧视图和(c)相应吸附能的比较。(d)Li 2 CO 3 在 Pt 表面不同取向上的分解能。(e)不同电极的 XRD 分析。(f)HTS 后电极的详细表面结构和 TEM 观察(比例尺 = 200 nm)。
托马斯·琼斯毕业于阿尔伯塔大学,获得电气和计算机工程博士学位,并在普渡大学完成了 NSERC 博士后研究。他是 Jones Microwave Inc. 的创始人兼首席执行官,该公司为 5G/6G 电信、国防、卫星和仪器仪表市场的先进雷达和通信应用开发创新的微电子解决方案。
摘要:将二氧化碳转化为化学品和燃料是当前学术界和工业研究的一个关键领域,其中热催化加氢制甲醇是最先进的路线之一。最近,结合行星边界框架的生命周期分析证实了该过程的可持续性,强调需要更便宜的二氧化碳和可再生氢气,以及一种具有高活性、选择性和耐久性的催化系统来满足经济要求。本文回顾了我们的研究工作,旨在从原子水平上了解突破性 In 2 O 3 基催化系统中活性位点的电子和几何特性,以指导其开发。深入的机理阐明表明,有限的氢活化能力以及水驱动烧结是纯 In 2 O 3 的局限性。通过共沉淀添加少量钯成功解决了前者,形成了牢固锚定在氧化物晶格上的微小簇,从而实现了前所未有的持续甲醇生产率。使用单斜氧化锆作为载体,使 In 2 O 3 在二维纳米结构中高度分散,诱导 In 2 O 3 上形成额外的活性位点,并有助于 CO 2 活化,为进一步提高活性和解决 In 2 O 3 烧结问题提供了一种有效的方法。总的来说,我们的研究结果为合理设计一种负载型和促进型 In 2 O 3 催化剂奠定了坚实的基础,具有大规模应用的光明前景。
本文以实践为重点,旨在分析可再生能源 (RE) 作为南非 (SA) 可持续能源分配部门催化剂的潜力,并促进制造商、政府和所有相关利益相关者之间的合作。研究设计是系统的文献综述。它采用定性研究方法,通过问卷调查来评估能源分配部门的专业人士、能源部门的经理或领导者以及能源部门专家的知识和观点。选定的样本量在 350 到 400 名参与者之间。文献回顾指出,光伏 (PV) 能源是可持续能源发电的主要可再生能源之一。此外,整个南非的安装容量和投资持续增长。值得注意的是,分布式可再生能源系统在电力供应方面增加了价值。南非的能源贫困率很高,而 Covid-19 大流行的影响进一步加剧了所面临的挑战。总体结论是,由于全球变暖和大规模污染的增加,可再生能源用于发电已变得显而易见。本文介绍了可再生能源作为南非可持续能源分配行业催化剂的潜在机会。通过确定主题相关性、技术类型、地理范围、干预规模和数据类型,制定了纳入或排除相关科学文献的标准。
迫切需要过渡到整个更可持续的社会,尤其是化学工业。[1,2],尽管进行了深入的研究,但我们目前对催化剂的激活,稳定性能,衰老,失活和再生的过程不可能应对这一挑战。[3-14]随后,无论我们在合成和表征方法方面的进步如何,新催化剂的经验发现仍然是常态。这是一个非常低效,耗时且总体上不满意的努力。关于最佳催化剂设计的量身定制设计的主张只有在建立了对工作催化剂的结构活动相关性的原子性理解后才能实现。这要求我们首先了解反应物的化学潜力如何影响催化剂的状态,以及这些气相和温度诱导的修饰如何反馈或在催化过程中进化。为了更多地阐明催化剂和反应性物种之间的相互作用,并遵循导致催化活性,实地和实时观察到高空间分辨率的活性催化剂的出现的过程。[15,16]
解决过多的碳排放引起的严重环境问题,碳捕获,利用和储存技术(CCUS)已引起了广泛关注。1 - 3为了探索Co 2 Hydroge-nation对甲醇反应4,5的探索,目的是同时改善可再生能源的利用。目前,工业量表上的甲醇合成很大程度上取决于合成气的转化,该合成气体是CO和H 2的混合物,与少量CO 2促进了Cu/ZnO/ZnO/Al 2 O 3催化剂。尽管如此,基于Cu的催化剂对于反水 - 气体什叶派(RWG)反应显着活跃,导致甲醇选择性降低和催化剂失活,尤其是在相对较高的反应温度下。6 - 8
Aristilde是环境过程中有机物动力学的专家,是西北麦考密克工程学院的环境工程副教授。她还是国际纳米技术研究所和Paula M. Trienens可持续性与能源研究所合成生物学中心的成员。Jade Basinski,博士学位该论文的第一位作者是亚里斯特实验室的学生。 其他博士学位的学生和博士后研究人员Jade Basinski,博士学位该论文的第一位作者是亚里斯特实验室的学生。其他博士学位
通过将APE与机器学习的原子间电位(MLIP)整合在一起,研究人员将其应用于钯表面的早期氧化,这是污染控制的关键系统。当应用于钯表面的早期氧化(用于减少排放量的催化转化器中的关键材料)时,APE发现了近3,000种过程,远远超过了传统KMC模拟的能力。这些发现揭示了在催化中类似于分子过程的时间尺度上发生的复杂原子运动和重组过程。
通过水电解的氢进化反应(HER)已成为氢生产的一种有吸引力且可持续的方法。1 - 3个电催化剂对于提高她的效率至关重要。然而,由于贵金属催化剂的稀缺性和高成本,发展成本效率,高度有效和稳定的电催化剂仍然是一种显着挑战 - 对于大规模利用氢能的挑战。单原子催化剂(SACS)表现出最大的原子效率,高选择性和对各种化学反应的高活性,已在催化的ELD中打开了一个新的边界。4 - 7由廉价,丰富的金属组成的SAC的发展为加速氢经济提供了机会。在2011年,Qiao及其同事通过采用共同沉积方法来准备PT SAC
遗传信息的存储和转移[1,2]。 DNA甚至没有主要考虑,假设惰性化学性质将通过确保没有不希望的遗传指示改变来提供进化优势。 要克服的主要障碍是四个具有有限功能的规范性障碍(大部分是沃森和克里克基料配对),在糖的2'位置下没有羟基。 又花了十年的时间证明了dnazymes,单链的脱氧乙烯核苷酸(ODN),而没有体内对应物,也能够具有可以匹配酶的催化活性[3,4]。 可以通过迭代且功能强大的SELEX方法在体外选择dnazymes的适体(能够结合催化特性但没有催化特性的寡核苷酸[5,6],依赖于使用未修饰的核苷5' - 三磷酸盐(DNTP)。 这些核苷酸是(突变)DNA 的底物遗传信息的存储和转移[1,2]。DNA甚至没有主要考虑,假设惰性化学性质将通过确保没有不希望的遗传指示改变来提供进化优势。要克服的主要障碍是四个具有有限功能的规范性障碍(大部分是沃森和克里克基料配对),在糖的2'位置下没有羟基。又花了十年的时间证明了dnazymes,单链的脱氧乙烯核苷酸(ODN),而没有体内对应物,也能够具有可以匹配酶的催化活性[3,4]。可以通过迭代且功能强大的SELEX方法在体外选择dnazymes的适体(能够结合催化特性但没有催化特性的寡核苷酸[5,6],依赖于使用未修饰的核苷5' - 三磷酸盐(DNTP)。这些核苷酸是(突变)DNA