氧化石墨烯(GO)已通过计时度计和使用三电极系统进行电化学合成。铁,锰和钴苯烷氨酸(分别为FEPC,MNPC和COPC)已被评为不可用的。这些材料在物理化学上是特征的(X射线光电子光谱(XPS),紫外线 - VIS,元素分析和拉曼光谱法),形态学上(透射电子微观,TEM)和电化学上的电化学(环状伏安法)。电化学研究包括使用合成的电催化剂的氧还原反应(ORR)和Zn-Air电池性能。此外,已经对Zn-Air Bat Tery的自支撑电极进行了制造和评估,氧化石墨烯氧化石墨烯烃(GOB)已被制造并评估。对GOB(GOB/FEPC)支持的GO/FEPC和FEPC,FE含量低于0.5 wt%。使用较低量的金属,GO/FEPC和GOB/FEPC表现出与基于PT的电催化剂的可比性。
抽象音乐流媒体服务Spotify最近宣布,流派在流行音乐文化中变得越来越重要,将这一想法与后身份主张联系起来。相比之下,本文的中心论点是流派在音乐流中继续重要,其中算法推荐系统可以补充流派及其与身份和差异的结构的关联。我们通过对网站上在网站上进行的多模式元素分析进行多模式的话语分析,一次每一次噪音,播放列表策划和媒体话语都进行了多模式论述分析。分析流派泡泡果和说唱Français(法国说唱),我们表明Spotify及其用户的算法和人类专业及其用户重新构成类型,构成推荐,策划和消费的模式。这些过程补充了较早的身份,时间和地位的构造。同时,它们加强了分化和个性化,并与掩盖力量失衡的新自由主义中多样性和多样性的假设联系在一起。
激光发明于 1963 年,此后不久,激光诱导击穿光谱法也得到了发展。1 许多现代分析技术都是以原子光谱为基础来实现典型的汽化和激发。激光诱导击穿光谱 (LIBS) 就是其中之一。元素分析是通过使用快速分析技术即激光诱导击穿光谱 (LIBS) 完成的,该技术已广泛应用于各种工业应用。LIBS 使用由分析仪产生的高能辐射短脉冲。2 LIBS 具有多种优势,例如无化学技术、便携性、空间信息和快速检测。3 但其相对较低的测量重复性是 LIBS 技术的主要缺点。4 LIBS 也称为原子发射光谱法。当原子处于高能态时,它们会从低能级被激发到高能级。5 LIBS 也是一种直接且用途广泛的激光诱导等离子体光谱技术,可分析光谱发射。 6 LIBS 能够同时进行多种物种测量,因此它是一种发射技术。 7 LIBS 也称为激光火花光谱 (LSS) 和激光诱导等离子体光谱 (LIPS)。通过监测发射信号
以 3,5-双(三氟甲基)苯并肼 (1) 和各种取代的异硫氰酸酯为原料,合成了一系列新型氨基硫脲衍生物 (2a-d)。通过分析和光谱 (IR、1 H-NMR 和元素分析) 方法确定了新型化合物的结构。进行了计算机模拟研究,以确定和评估化合物的潜在抗癌活性。靶向药物设计对于癌症治疗至关重要,因为它可以提高选择性,从而减少抗癌药物的副作用。计算机辅助药物设计技术使我们能够设计和开发靶向的、因此具有选择性的治疗药物。我们在药物设计过程中受益于该技术,并将我们的靶标选定为 ATP 依赖性酶拓扑异构酶 II (Topo II)、表皮生长因子受体 (EGFR) 酪氨酸激酶结构域、碳酸酐酶 IX 和微管蛋白-秋水仙碱:stathmin 样结构域复合物,这些复合物因其生化和生理活性在癌症发展过程中发挥重要作用。根据计算机研究的结果,标题化合物显示出显著的潜在活性,具有成为多靶点药物的资格,可以同时作用和打击癌症化疗的几个主要靶点。
锂离子电池技术在生态经济和新能源的开发方面具有出色的优势。作为锂离子电池的核心成分,阳极材料在电池的性能行为中起着重要作用,作为细胞能量密度,工作潜力等。如今,石墨被认为是锂电池最先进的阳极材料。它具有低锂插入潜力的优点,以确保高输出电压;在充电和排放过程中的结构稳定,并且周期寿命较长;高电子电导率;自然资源丰富等等而,石墨材料中的杂质含量会导致电池降解,并极大地影响稳定性和生命周期。使得杂质的确定对于锂电池生产者的质量质量/QC要求至关重要。但是,石墨材料可以承受高温,高度耐腐蚀性,结构稳定,这使样品制备成为挑战的挑战。在这里,提出了一种微波消化方法,用于准备石墨材料,以作为ICP -OES或ICP -MS进行进一步的元素分析。使用高性能的气密高压容器与M6微波消化系统结合使用,可以彻底消化石墨。
抽象目的:VIIA因子是一种糖基化的二硫键异二聚体,属于涉及凝结过程的丝氨酸蛋白酶家族。抑制VIIA因子是新型抗凝剂的关键靶标之一。 凝血因子VIIA抑制作用最近引起了人们的关注,作为一种有趣的抗血栓治疗策略。 借助X射线晶体学和基于结构的设计,我们能够发现一系列新型的N-苯基-2-(苯基 - 氨基)乙酰酰胺衍生物,对因子VIIA具有显着的亲和力。 材料和方法:22种化合物的合成是基于Schotten-Baumann反应。 通过物理,光谱和元素分析证实了合成的化合物。 使用凝血酶原测定法评估了体外,抗凝活性。 结果:化合物4、7、15、16和19在体外表现出良好的抑制性抗凝活性,并且在硅中显示出良好的对接得分。 n-苯基-2-(苯基氨基)乙酰酰胺为合成新型和有效的抗凝衍生物的合成提供了良好的模板。 结论:N-苯基-2-(苯基氨基)乙酰胺衍生物可以用作凝结疾病的潜在药物化合物。 这项研究的目的是利用硅分子对接和体外抗凝剂活性,以增强效力设计和合成基于结构的新因子VIIA抑制剂。抑制VIIA因子是新型抗凝剂的关键靶标之一。凝血因子VIIA抑制作用最近引起了人们的关注,作为一种有趣的抗血栓治疗策略。借助X射线晶体学和基于结构的设计,我们能够发现一系列新型的N-苯基-2-(苯基 - 氨基)乙酰酰胺衍生物,对因子VIIA具有显着的亲和力。材料和方法:22种化合物的合成是基于Schotten-Baumann反应。通过物理,光谱和元素分析证实了合成的化合物。使用凝血酶原测定法评估了体外,抗凝活性。结果:化合物4、7、15、16和19在体外表现出良好的抑制性抗凝活性,并且在硅中显示出良好的对接得分。n-苯基-2-(苯基氨基)乙酰酰胺为合成新型和有效的抗凝衍生物的合成提供了良好的模板。结论:N-苯基-2-(苯基氨基)乙酰胺衍生物可以用作凝结疾病的潜在药物化合物。这项研究的目的是利用硅分子对接和体外抗凝剂活性,以增强效力设计和合成基于结构的新因子VIIA抑制剂。
近年来,由于对更可持续的能源和运输的需求越来越强劲,电动汽车市场和行业一直在迅速发展。随着这种更大的需求,出现了新的挑战,例如自主性和效率。体重在这两个参数中起着重要作用,因此减轻重量对于电动汽车的性能至关重要。另一方面,复合材料,尤其是碳纤维增强聚合物(CFRP),提供了经典金属材料的低重量替代品。在车辆中,可以通过复合材料改善机械性能的组件,同时减小结构重量,这是电池容器。在此组件中使用复合材料的使用变得越来越普遍,无论是在高性能的汽车中,例如机动运动还是常规运输车辆。复合材料不仅具有较高的电阻/权重关系,而且还提供了其他优势,例如低电导率和更大的刚性。他们也有可能制作更复杂的形式。与高性能运动运动一样,复合材料可用于工程相关的环境中,例如促进学生融合的竞赛。Formula Student是一项全球竞赛,在该竞争中,学生面临挑战和制造公式式跑步汽车的挑战。这些汽车可能具有燃烧,电动机或混合运动组。电动汽车的关键组成部分是其电池,因此是其容器,可以保证结构完整性和安全性。该容器由许多铝制团队制造。但是,许多团队选择在电动汽车市场之后使用复合材料。在本文中,提出了CFRP容器的概念来提高组件性能和安全性。经过一些设计迭代后,通过有限元素模拟研究了CFRP电池盒的性能。这样做不仅是为了了解新结构的行为,而且是为了确保它符合汽车将参与的比赛规定。还使用了复合材料的经典理论对分析模型进行了综述,这导致了某些模型与实验论文的比较。使用Altair HyperMesh进行临界加载案例进行层优化模拟,以减轻所选区域的重量或增加电阻。 最后,使用类似于累加器盒的材料进行实验测试,以创建一个工作流程,以在电池盒中使用的材料测试中使用。 关键字:复合材料,电动汽车,有限元素分析,学生公式,电池讲故事的人,模拟,弯曲测试。层优化模拟,以减轻所选区域的重量或增加电阻。最后,使用类似于累加器盒的材料进行实验测试,以创建一个工作流程,以在电池盒中使用的材料测试中使用。关键字:复合材料,电动汽车,有限元素分析,学生公式,电池讲故事的人,模拟,弯曲测试。
在工作中研究了2,2' - [乙烷-1,2dylbis(oxy)]二苯甲甲醛(N),硫代甲苯二硫酸盐配体(W)及其金属配合物在工作中。通过在DMF培养基中反应水杨醛和碳酸钠,在两个阶段完成合成反应,然后加入1,2-二溴乙烷当量。通过混合氢氮和CS 2,合成了W。配体(W)是通过将乙醇金属氯化物溶液添加到金属离子集合中产生的。之后,将配体N引入并溶解。在(0.5 m n:w)摩尔比以创建五种新型化合物的DMF中。使用物理化学技术(FT-IR,电子光谱分析,质量,¹-NMR和13 C-NMR光谱,元素分析,磁敏感性和摩尔浓度),验证合成化合物的孤立组成实体(电导率)。基于表征数据,形成了具有化学式[MLCL 2]的八面体化合物。当M = CO(LL),Ni(LL),Cu(LL),Zn(LL)和CD(LL)(LL)时,将标题成分(配体和复合物)的抗菌作用评估为抗氧化剂。结果表明,相对于L.
简介:激光烧蚀元素同位素光谱仪系统 (LABEISS) 是一种面包板仪器,具有两种主要技术——激光诱导击穿光谱 (LIBS) 和激光烧蚀分子同位素光谱 (LAMIS)。此外,LABEISS 还能够将拉曼光谱、激光诱导荧光和被动反射作为支持技术。LIBS 已成为行星探索的主要技术,最著名的是 ChemCam 和 SuperCam 仪器,后者最近搭载在 NASA 的 Mars2020 毅力号探测器上 [1, 2, 3]。LIBS 是一种快速获取地质样品、土壤样品和表面清洁(使用重复激光烧蚀)中主要和次要元素分析结果的方法。与 LIBS 相比,LAMIS 基于分子发射的同位素位移(所谓的同位素异形体),该位移的时间延迟由激光烧蚀过程中等离子体和原子的结合时间定义 [4, 5]。LAMIS 已成为 LIBS 的一种有前途的补充技术,因为它可以表征目标的同位素特征,从而提供同位素区分。拉曼光谱 (RS) 发生在分子被激发源激发并通过分子键或晶格的振动、旋转或拉伸产生非弹性散射时。每个谱带对应于分子键激发波长的不同拉曼波数位移,可用于识别或“指纹识别”多种材料。
获得了他的博士学位从那时起,1977年在分析化学领域就一直在加拿大国家研究委员会任职。他的兴趣在于无机分析化学,包括痕量元素分析,蒸气产生,有机金属形成和认证参考材料的生产,重点是原子和质谱测量技术。他发表了大约350份同行评审的文章,十几本书章节,并编辑了两本书。他担任SpectroChimica Acta评论的编辑已有16年了,是许多国际分析化学期刊的顾问委员会成员,并在国际权重和措施中代表了加拿大的利益,在该局中,他参与了工作组的无机分析以及实验室医学的共同委员会的工作组。His contributions to the analytical sciences have been recognized through a number of awards and distinctions, including Fellowship in the Chemical Institute of Canada (1990) and the Royal Society of Chemistry (UK, 2012), the Barringer and Herzberg awards of the Spectroscopy Society of Canada, the McBryde Medal from the Chemical Institute of Canada, the Ioannes Marcus Marci award of the Czech Spectroscopic Society, the加拿大化学研究所的Maxxam奖和应用光谱学会的Lester W. Strock奖章(美国)。最近,他获得了NRC(2022)的杰出成就奖,以表彰质谱的工作。他拥有与原子光谱的样本引入有关的三项专利。