印度的第三次月球任务Chandrayaan-3将在月球高纬度位置部署一个着陆器和一个流浪者,使我们能够对这种原始位置进行有史以来的首次原位科学调查,这将有可能提高我们对主要地壳形成和后续修改过程的理解。主要着陆点(PLS)位于69.367621°,32.348126°。作为偶然性,在几乎相同的纬度上选择了替代着陆点(ALS),但向西约450 km至PLS。在这项工作中,使用了有史以来最好的高分辨率Chandrayaan-2 OHRC Dems和Ortho-images进行了对ALS的地貌,组成和温度特征的详细研究,该数据是从Chandrayaan-1和On Incon each each each each each each eachine lunar侦察机获得的数据集。为了理解热物理行为,我们使用了一个完善的热物理模型。我们发现Chandrayaan-3 ALS的特征是平滑的地形,中央部分相对较高。als由埃拉托斯尼(Eratosthenian)年龄的莫雷特斯(Moretus-A火山口)主导,位于Tycho Crater的喷出毯上。ALS是一个科学有趣的地点,可以从Tycho和Moretus中取出弹射材料。然而,由于存在Eratosthenian年龄喷射材料,该地点是巨石富集,OHRC得出的危险图证实了ALS内的75%无危险区域,因此适合着陆和漫游者操作。带有APX和LIBS板上的Tycho弹出的痕迹将有助于理解ALS内的组成变化。基于位点的光谱和元素分析,Fe的重量百分比约为4.8(wt。%),毫克〜5 wt。%和Ca〜11 wt。%。在构图上,ALS类似于具有典型的高地土壤类型组成的PL。的空间和昼夜变异性约为40 K和〜175 K。与PL相比,ALS属于类似位置,但与PL相比,ALS显示出降低的白天温度和夜间温度的降低,这表明与PL相比具有独特的热物理特征。像PLS一样,ALS似乎也是科学调查的有趣场所,Chandrayaan-3有望为对月球科学的理解提供新的见解,即使它恰好降落在替代着陆点。
定量矿物分析James Bond 1,Louis Giroux 2 1 Pvatepla America 251 Corporate Terrace Corona CA 92879; 2加拿大Canmetenergy自然资源1 Haanel Drive,渥太华,K1A 1M1,加拿大关键词:低温,血浆,煤炭,煤炭,分析摘要理解煤炭中矿物质的性质和分布,从而产生了有关煤炭地质形成的重要信息,以及矿物质对煤炭利用的影响,包括燃烧和碳化。具体来说,了解煤矿开采及其燃烧副产品的环境影响是改善燃煤电厂技术的重要信息。同样,冶金煤中矿物质成分的知识及其在焦化过程中的转化对于改善我们对反应后的可乐反应性指数,CRI和可乐强度的解释很重要,CSR。作为矿物质是煤炭的次要组成部分,在使用传统的矿物学技术(包括定量X射线衍射)进行研究之前,它需要通过去除其有机含量来集中。使用低温血浆有效地实现了这一点。这是通过将煤研磨成细粉(通常小于212µm)的,然后使用氧血浆加入的细粉来完成,然后再混合煤并进一步加重,直到获得恒定的重量。对于痕量元素分析,该过程更多地参与其中,并结合了通过ICP-AES或ICP-MS等方法的质量溶解和分析。我们将提供数据,显示使用低温(40至50 o C)血浆的有机样品重量减少了煤,焦炭和油砂样品。大多数样品表明,使用100瓦的13.56MHz RF功率在100瓦和250瓦和250 scc/min o 2气流的情况下,呼吸时间为100至150小时,足以完全消除这些物质/可燃物质。简介什么是等离子体?:等离子体是一种物质状态,就像固体,液体或气体一样。为气体增加足够的能量,并部分将其电离为物质的第四个状态 - 等离子体(图1)。可以通过应用电场来加速等离子体中存在的自由电子。通过与这些快速移动电子的碰撞来化学激活馈入血浆的气体。结果是一个高度化学反应性的环境,可用于处理材料表面。血浆的一种重要用途是从表面的有机物的低温燃烧
数字化和数值信号处理,gabriele pasquali -12 h(2 cfu),4月 - 六月gabriele.pasquali@unifi.infi.unifi.t课程是对数字化和信号处理的介绍,并应用于物理学中的传感器/检测器。在简要介绍了模数转换器的原理和特征之后,我们处理采样理论和信号重建。其他主题是:具有LTI(线性时间不变)系统的数字信号处理,离散的傅立叶变换,Z变换,自定义处理系统的设计。可以适应学生的特定需求。法医学科学的核分析技术,Massimo Chiari-12 h(2 cfu),1月至1月,chiari@fi.infn.it核分析技术(NAT),基于加速器的技术,离子光束分析(IBA),包括基本和分子分析和中间人群体分析(IBA),用于基于元素的质谱(IBA)。 (NAA),在核反应堆中进行元素分析。在本课程中,我们将审查NATS,并将申请提交大量法医问题,例如分析滥用药物,食品欺诈,伪造药物,枪击残留物,玻璃碎片,艺术品对象和文档的伪造以及人类材料。成像CT的新型前沿,Mara Bruzzi和Adriana Taddeucci -12 H(2 CFU),4月至6月mara.bruzzi@unifi.it,adriana.triana.taddeucci@unifi@unifi.itcompocted.itcompocted.itcompocted.itcomported.itcompoiced.itcompoich.itcompoich.itcompoich.it computed somography(CT)对医学实践产生了深远的影响。通过加深对解剖学,生理和病理学的了解,CT促进了疾病的检测和管理。CT的最新进展涉及光谱成像技术的发展和人工智能的使用(深度学习,DL)。光子计数CT(PC-CT)可以测量每个单独的光子与检测器相互作用的能量,从而可以鉴定单个材料(例如碘化的血液,软组织,骨骼)。在质子治疗中,通常通过适当的转换和校准系数从翻译光子衰减系数(Hounsfield的单位-HU)的X-CT图像中提取相对停止功率(RSP)图。质子CT(PCT)是一种新兴技术,可直接估算RSPS,从而改善了质子治疗的治疗计划和验证。本课程将在光子CT和Proton CT技术中介绍并讨论最先进和前沿研究。医学物理探测器,cinzia talamonti -12 h(2 cfu),4月至6月cinzia.talamonti@unifi.it.it介绍了现代方法,以检测医学物理学中的颗粒。将描述“剂量法”和“剂量计”的概念以及剂量测量的解释。布拉格灰腔理论和电离室是剂量测定法的基石。将讨论钻石,有机闪光灯,无定形硅,闪烁纤维和被动剂量计的尖端探测器,这些探测器将在临床绝对和相对剂量测定法中满足新需求。最终将引入微观测定法的概念。新的国际测量和实践守则包括在小田间剂量法中的电离室和“固态室”(硅,钻石)之间的比较。
电视上对法医检测的描述通常显示结果在几小时内就会出来,但实际上,检测可能需要数周甚至数月才能完成。由于其法律含义,法医实验室有严格的规程和记录保存要求。检测需要专业知识、特定方法和记录每个处理样本的人的“保管链”。实验室工作人员接受实验室科学和法医程序方面的培训。法医病理学家进行尸检并解释结果以确定死亡原因、方式、时间,有时还要确定死亡身份。他们可能在法医或验尸官系统中工作,法医通常是法医病理学家的指定官员,验尸官是民选官员,可以是任何类型的医生或外行。法医科学通过电视节目获得了极大的关注,但现实往往与所描绘的实验室专业不同。法医检测的复杂性意味着很少有实验室可以进行所有必需的检测。对于特定的遗传标记识别,可能需要全面的检测菜单,需要转诊到专业或参考实验室。样本采集、制备和检测需要时间和资源。尽管过去十年技术取得了进步,但局限性仍然存在。病理学研究疾病或受伤引起的身体变化。法医病理学评估刑事调查和民事诉讼中出现的问题。大多数法医病理学家都是两个主要分支的专家:解剖学(结构改变)和临床学(对体液和组织进行实验室测试)。在尸检过程中,他们会进行大体检查,记录身体特征并进行解剖以收集组织样本进行显微镜检查。组织采样可能包括血液、玻璃体液、尿液、胆汁、胃内容物、肝脏、脑、肺和其他器官。毒理学测试可能涉及 DNA 分型、传染病培养和各种化学测试。玻璃体液在确定死亡原因方面特别有用,因为物质浓度的变化在死亡后会缓慢发生。法医检测有助于诊断某些因糖尿病酮症酸中毒、脱水、肾衰竭、摇晃婴儿综合征、窒息等原因导致的死亡情况或疾病。对毒物摄入或药物使用进行关键调查需要进行系统毒理学检测。尽管人们对毒素的了解跨越了几个世纪,但系统检测在 20 世纪初才开始出现。如今,法医毒理学涉及尸检案件中的常规酒精和药物检测。对涉及药物的致命事件的调查可能需要分析事件发生时是否存在药物中毒。这包括药物可能导致意外或凶杀死亡的情况。法医毒理学家对非法药物和治疗药物(包括酒精)进行全面检测。在某些情况下,例如机动车死亡事件,会测量血液酒精含量以确定损伤是否在事件中发挥了作用。毒理学评估还可以通过测量抗惊厥药等药物的血液浓度来帮助确认死因。在法医环境中,实验室分析涉及将物质从体液或组织中分离出来,然后使用不同的测试对其进行识别。如果检测到某种物质,实验室必须使用更灵敏和更具体的技术来验证结果。物质的存在并不一定意味着它导致了死亡;相反,法医病理学家的浓度和解释至关重要。除了尸检调查外,毒理学还涉及活体个体和与药物毒性有关的问题。这包括酒驾测试、运动员的非法兴奋剂测试以及工作场所药物测试。吸毒仍然是美国一个重大的医疗和社会问题,导致各行各业都必须接受检测,包括军队、公共部门雇员、医护人员、交通运输员工和私营部门雇员。药物检测可以通过各种方法进行,例如尿液、血液、头发、汗液、唾液或基因检测。基因检测已添加到法医病理学家的工具箱中,允许对生物样本中的细胞进行 DNA 分析,以确定个人独特的基因组成。该技术通常用于临床环境中检测染色体突变和预测疾病倾向。在法医环境中,DNA 分型有助于识别个体并有助于案件调查。该过程包括分析来自多个来源的遗传物质并比较它们的序列以确定它们是来自同一个人还是亲属。该技术适用于身份和亲子关系测试,可用于民事和刑事案件。通过检查少量 DNA 样本,可以唯一地识别一个人。口腔拭子、血滴或微小组织样本可以提供足够的 DNA 进行分析。 DNA 在各种条件下(例如温度波动或干燥)的稳定性使其成为检测的理想选择。由于个体的 DNA 在其一生中保持不变,并且在所有细胞中都是相同的,因此它是身份和亲子关系的可靠标记。除了同卵双胞胎的情况外,每个人的 DNA 都是不同的。法医 DNA 分型不同于医学基因检测,因为它不会透露有关个人健康或病史的任何信息。测试的 DNA 序列与预测健康状况无关。法医 DNA 分型中的样本采集、保管链和测试程序必须遵循严格的协议。在美国,联邦调查局的 DNA 咨询委员会和 AABB 为进行法医身份和亲子鉴定的实验室制定了标准,重点关注质量保证和检测。身份鉴定包括比较两个来源的 DNA 序列以确定它们是否匹配。这有助于将嫌疑人与犯罪联系起来,排除某人的嫌疑人身份,或识别灾难事件中的受害者。实验室分析从血液、唾液或组织等样本中提取的 DNA 以识别个体。通过检查基因组不同位置的特定 DNA 片段,实验室可以确定证据和嫌疑人之间的匹配。鉴于这种情况的罕见性,十三个位置的匹配通常被认为是身份的确凿证据。个体之间 DNA 序列的独特差异使得两个人共享相同 DNA 图谱的可能性极小。法医科学家严重依赖 DNA 图谱,但如果没有可匹配或排除的可比图谱,其价值就会降低。为了解决这个问题,联邦调查局于 1990 年推出了 CODIS,这是一种计算机程序,可将新的 DNA 档案与国家 DNA 索引系统 (NDIS) 中现有的 DNA 档案进行比较。该数据库包含被定罪人员的基因指纹和未解决案件的 DNA 证据。匹配已帮助破获了 100,000 多起犯罪案件并洗清了被错误指控的个人。CODIS 系统包含各种用于识别目的的索引,包括被定罪罪犯索引、被捕者索引和未解决犯罪现场索引。此外,还包括失踪人员及其亲属的档案,以帮助识别找到的人员或遗骸。“指纹”片段称为短串联重复序列 (STR),它们不代表基因,而是代表基因之间的区域。与疾病风险相关的遗传信息不存储在 CODIS 中,也不能根据 STR 识别身体特征或遗传倾向。亲子鉴定 DNA 可确定与调查或民事诉讼相关的父子关系或家庭关系。这一过程将基因检测结果与身体特征和非基因事件(如受孕期间涉嫌父母的位置)相结合。在疑似性侵犯的情况下,常规检测包括 DNA 分析以及妊娠和性传播感染检测,如梅毒和肝炎筛查。在性侵犯检测方面,会进行各种检测以收集受害者在事件发生前后的健康状况信息。这些检测可以在涉嫌侵犯发生后的几个小时内进行,包括淋病、衣原体和 HIV 的血液检查。然而,由于初次接触和检测结果之间的时间延迟,一些检测可能会引起争议。为了确定是否因涉嫌侵犯而怀孕或感染,可以在事件发生六周到六个月后重复检测。如果受害者不记得袭击前后发生的事情,他们可能会接受“约会强奸药”测试,例如氟硝西泮和γ-羟基丁酸酯。还可以进行其他测试,包括酒精和药物滥用测试。但是,醉酒证据不应被用来在法庭上诋毁受害者。法医科学自 1914 年成立以来发生了重大发展,第一个北美法医实验室在蒙特利尔成立。它最初是后来实验室(包括联邦调查局)的典范,现已发展成为一门复杂的学科,帮助执法部门保护受害者并起诉罪犯。法医专业包括病理学、毒理学、心理学等。这些领域利用多种测试来检查证据,例如人类学来分析骨头碎片并确定种族、性别、年龄和身材等特征。法医科学家使用 X 射线技术将发现的骨头与失踪人员的骨头进行比较,以进行身份识别。骨骼损伤的性质,如撞击伤或枪伤,也是通过人类学检查确定的。此外,对商用电子设备的测试可以深入了解受害者、目击者和肇事者的通信和行动。研究人员检查电脑、手机、手持电脑和相机,以追踪数字踪迹。当找不到子弹碎片或枪支时,科学家会对子弹外壳进行元素分析,以了解子弹和可能开枪的枪支。这是通过测试制造外壳所用的合金来实现的,这可以揭示有关多名枪手的信息,子弹的制造地点,甚至射击角度。密码破译是一种用于分析和解密加密文件以发现隐藏信息的过程,通常被犯罪组织和恐怖分子使用。法医科学家对书面或数字代码采用密码分析技术来提取有意义的数据。DNA 检测是一种众所周知的法医检测,涉及对身体组织、血液和其他体液进行实验室分析,以将它们与个人联系起来。这可以确定骨骼、头发和指甲样本的来源。通过将个人或近亲的 DNA 样本与证据中发现的样本进行比较,DNA 测试在识别来源方面非常可靠。它已经发展成为一门复杂的学科,帮助执法部门保护受害者并起诉罪犯。法医专业包括病理学、毒理学、心理学等。这些领域利用多种测试来检查证据,例如人类学来分析骨头碎片并确定种族、性别、年龄和身材等特征。法医科学家使用 X 射线技术将发现的骨头与失踪人员的骨头进行比较,以进行身份识别。骨骼损伤的性质,如撞击或枪伤,也是通过人类学检查确定的。此外,对商用电子设备的测试可以深入了解受害者、目击者和肇事者的通信和行动。检查电脑、手机、手持电脑和相机以追踪数字踪迹。当找不到子弹碎片或枪支时,科学家会对子弹外壳进行元素分析,以了解子弹和可能开火的枪支。这是通过测试制造外壳所用的合金来实现的,这可以揭示有关多名枪手的信息,子弹的制造地点,甚至指示射击角度。密码破译是一种分析和解密加密文件以发现隐藏信息的过程,通常被犯罪组织和恐怖分子使用。法医科学家使用密码分析技术对书面或数字代码进行分析以提取有意义的数据。DNA 检测是一种众所周知的法医检测,涉及对身体组织、血液和其他体液进行实验室分析以将其与个人联系起来。这可以确定骨骼、头发和指甲样本的来源。通过将个人或近亲的 DNA 样本与证据中发现的样本进行比较,DNA 检测在识别来源方面非常可靠。它已经发展成为一门复杂的学科,帮助执法部门保护受害者并起诉罪犯。法医专业包括病理学、毒理学、心理学等。这些领域利用多种测试来检查证据,例如人类学来分析骨头碎片并确定种族、性别、年龄和身材等特征。法医科学家使用 X 射线技术将发现的骨头与失踪人员的骨头进行比较,以进行身份识别。骨骼损伤的性质,如撞击或枪伤,也是通过人类学检查确定的。此外,对商用电子设备的测试可以深入了解受害者、目击者和肇事者的通信和行动。检查电脑、手机、手持电脑和相机以追踪数字踪迹。当找不到子弹碎片或枪支时,科学家会对子弹外壳进行元素分析,以了解子弹和可能开火的枪支。这是通过测试制造外壳所用的合金来实现的,这可以揭示有关多名枪手的信息,子弹的制造地点,甚至指示射击角度。密码破译是一种分析和解密加密文件以发现隐藏信息的过程,通常被犯罪组织和恐怖分子使用。法医科学家使用密码分析技术对书面或数字代码进行分析以提取有意义的数据。DNA 检测是一种众所周知的法医检测,涉及对身体组织、血液和其他体液进行实验室分析以将其与个人联系起来。这可以确定骨骼、头发和指甲样本的来源。通过将个人或近亲的 DNA 样本与证据中发现的样本进行比较,DNA 检测在识别来源方面非常可靠。密码破译是一种分析和解密加密文件以发现隐藏信息的过程,通常被犯罪组织和恐怖分子使用。法医科学家使用密码分析技术对书面或数字代码进行分析以提取有意义的数据。DNA 检测是一种众所周知的法医检测,涉及对身体组织、血液和其他体液进行实验室分析以将其与个人联系起来。这可以确定骨骼、头发和指甲样本的来源。通过将个人或近亲的 DNA 样本与证据中发现的样本进行比较,DNA 检测在识别来源方面非常可靠。密码破译是一种分析和解密加密文件以发现隐藏信息的过程,通常被犯罪组织和恐怖分子使用。法医科学家使用密码分析技术对书面或数字代码进行分析以提取有意义的数据。DNA 检测是一种众所周知的法医检测,涉及对身体组织、血液和其他体液进行实验室分析以将其与个人联系起来。这可以确定骨骼、头发和指甲样本的来源。通过将个人或近亲的 DNA 样本与证据中发现的样本进行比较,DNA 检测在识别来源方面非常可靠。
1。Mitchell AJ,Shiri-Feshki M.轻度认知障碍对痴呆症 - 元素分析41个强大的Inception Cohort研究的进展率。Acta Psychiatr Scand。2009; 119:252-265。 2。 Liu S,Cao Y,Liu J,Ding X,Coyle D,Initiative ADN。 一种新颖的检测方法,可有效预测从轻度齿状损伤转化为阿尔茨海默氏病的转化。 Int J Mach学习Cybern。 2023; 14:213-228。 3。 Pereira T,Ferreira FL,Cardoso S等。 神经心理学的预测因素从轻度认知障碍到阿尔茨海默氏病的转化率:一种特征选择合奏,结合了稳定性和可预测性。 BMC Med Infors Decis Mak。 2018; 18:1-20。 4。 Scheltens P,Blennow K,Breteler M等。 阿尔茨海默氏病。 柳叶刀(Lond Engl)。 2016; 388:505-517。 5。 Turner RS,Stubbs T,Davies DA,Albensi BC。 诊断阿尔茨海默氏病和相关痴呆症的潜在新方法。 前神经。 2020; 11:496。 6。 Thomas JA,Burkhardt HA,Chaudhry S等。 评估语言和语音生物标志物的效用,以预测弗雷明汉心脏研究认知衰老队列数据中的认知障碍。 j阿尔茨海默氏症。 2020; 76:905-922。 7。 Weiner MW,Veitch DP,Miller MJ等。 在AD研究中增加参与者的分歧:数字筛查,血液测试计划和阿尔茨海默氏病神经疾病倡议的社区参与方法4。2009; 119:252-265。2。Liu S,Cao Y,Liu J,Ding X,Coyle D,Initiative ADN。 一种新颖的检测方法,可有效预测从轻度齿状损伤转化为阿尔茨海默氏病的转化。 Int J Mach学习Cybern。 2023; 14:213-228。 3。 Pereira T,Ferreira FL,Cardoso S等。 神经心理学的预测因素从轻度认知障碍到阿尔茨海默氏病的转化率:一种特征选择合奏,结合了稳定性和可预测性。 BMC Med Infors Decis Mak。 2018; 18:1-20。 4。 Scheltens P,Blennow K,Breteler M等。 阿尔茨海默氏病。 柳叶刀(Lond Engl)。 2016; 388:505-517。 5。 Turner RS,Stubbs T,Davies DA,Albensi BC。 诊断阿尔茨海默氏病和相关痴呆症的潜在新方法。 前神经。 2020; 11:496。 6。 Thomas JA,Burkhardt HA,Chaudhry S等。 评估语言和语音生物标志物的效用,以预测弗雷明汉心脏研究认知衰老队列数据中的认知障碍。 j阿尔茨海默氏症。 2020; 76:905-922。 7。 Weiner MW,Veitch DP,Miller MJ等。 在AD研究中增加参与者的分歧:数字筛查,血液测试计划和阿尔茨海默氏病神经疾病倡议的社区参与方法4。Liu S,Cao Y,Liu J,Ding X,Coyle D,Initiative ADN。一种新颖的检测方法,可有效预测从轻度齿状损伤转化为阿尔茨海默氏病的转化。Int J Mach学习Cybern。2023; 14:213-228。3。Pereira T,Ferreira FL,Cardoso S等。神经心理学的预测因素从轻度认知障碍到阿尔茨海默氏病的转化率:一种特征选择合奏,结合了稳定性和可预测性。BMC Med Infors Decis Mak。 2018; 18:1-20。 4。 Scheltens P,Blennow K,Breteler M等。 阿尔茨海默氏病。 柳叶刀(Lond Engl)。 2016; 388:505-517。 5。 Turner RS,Stubbs T,Davies DA,Albensi BC。 诊断阿尔茨海默氏病和相关痴呆症的潜在新方法。 前神经。 2020; 11:496。 6。 Thomas JA,Burkhardt HA,Chaudhry S等。 评估语言和语音生物标志物的效用,以预测弗雷明汉心脏研究认知衰老队列数据中的认知障碍。 j阿尔茨海默氏症。 2020; 76:905-922。 7。 Weiner MW,Veitch DP,Miller MJ等。 在AD研究中增加参与者的分歧:数字筛查,血液测试计划和阿尔茨海默氏病神经疾病倡议的社区参与方法4。BMC Med Infors Decis Mak。2018; 18:1-20。 4。 Scheltens P,Blennow K,Breteler M等。 阿尔茨海默氏病。 柳叶刀(Lond Engl)。 2016; 388:505-517。 5。 Turner RS,Stubbs T,Davies DA,Albensi BC。 诊断阿尔茨海默氏病和相关痴呆症的潜在新方法。 前神经。 2020; 11:496。 6。 Thomas JA,Burkhardt HA,Chaudhry S等。 评估语言和语音生物标志物的效用,以预测弗雷明汉心脏研究认知衰老队列数据中的认知障碍。 j阿尔茨海默氏症。 2020; 76:905-922。 7。 Weiner MW,Veitch DP,Miller MJ等。 在AD研究中增加参与者的分歧:数字筛查,血液测试计划和阿尔茨海默氏病神经疾病倡议的社区参与方法4。2018; 18:1-20。4。Scheltens P,Blennow K,Breteler M等。阿尔茨海默氏病。柳叶刀(Lond Engl)。2016; 388:505-517。 5。 Turner RS,Stubbs T,Davies DA,Albensi BC。 诊断阿尔茨海默氏病和相关痴呆症的潜在新方法。 前神经。 2020; 11:496。 6。 Thomas JA,Burkhardt HA,Chaudhry S等。 评估语言和语音生物标志物的效用,以预测弗雷明汉心脏研究认知衰老队列数据中的认知障碍。 j阿尔茨海默氏症。 2020; 76:905-922。 7。 Weiner MW,Veitch DP,Miller MJ等。 在AD研究中增加参与者的分歧:数字筛查,血液测试计划和阿尔茨海默氏病神经疾病倡议的社区参与方法4。2016; 388:505-517。5。Turner RS,Stubbs T,Davies DA,Albensi BC。诊断阿尔茨海默氏病和相关痴呆症的潜在新方法。前神经。2020; 11:496。6。Thomas JA,Burkhardt HA,Chaudhry S等。评估语言和语音生物标志物的效用,以预测弗雷明汉心脏研究认知衰老队列数据中的认知障碍。j阿尔茨海默氏症。2020; 76:905-922。7。Weiner MW,Veitch DP,Miller MJ等。在AD研究中增加参与者的分歧:数字筛查,血液测试计划和阿尔茨海默氏病神经疾病倡议的社区参与方法4。阿尔茨海默氏症痴呆症。2023; 19:307-317。8。Caminiti SP,Ballarini T,Sala A等。FDG-PET和CSF生物标志物在预测大型多中心MCI队列中转化为不同痴呆症中的精度。神经图像临床。2018; 18:167-177。 9。 Long X,Chen L,Jiang C,Zhang L,倡议ADN。 基于MRI变形的定量,对阿尔茨海默氏病的预测和分类。 PLOS ONE。 2017; 12:E0173372。 10。 Varatharajah Y,Ramanan VK,Iyer R,Vemuri P.使用成像,CSF,遗传因素,认知弹性和人口统计学预测短期MCI至AD进展。 SCI代表。 2019; 9:2235。 11。 Ahmadzadeh M,Christie GJ,Cosco TD,MorenoS。神经影像学和分析方法,用于研究从轻度认知障碍到阿尔茨海默氏病的途径:快速系统评价的方案。 Syst Rev。 2020; 9:1-6。2018; 18:167-177。9。Long X,Chen L,Jiang C,Zhang L,倡议ADN。基于MRI变形的定量,对阿尔茨海默氏病的预测和分类。 PLOS ONE。 2017; 12:E0173372。 10。 Varatharajah Y,Ramanan VK,Iyer R,Vemuri P.使用成像,CSF,遗传因素,认知弹性和人口统计学预测短期MCI至AD进展。 SCI代表。 2019; 9:2235。 11。 Ahmadzadeh M,Christie GJ,Cosco TD,MorenoS。神经影像学和分析方法,用于研究从轻度认知障碍到阿尔茨海默氏病的途径:快速系统评价的方案。 Syst Rev。 2020; 9:1-6。对阿尔茨海默氏病的预测和分类。PLOS ONE。 2017; 12:E0173372。 10。 Varatharajah Y,Ramanan VK,Iyer R,Vemuri P.使用成像,CSF,遗传因素,认知弹性和人口统计学预测短期MCI至AD进展。 SCI代表。 2019; 9:2235。 11。 Ahmadzadeh M,Christie GJ,Cosco TD,MorenoS。神经影像学和分析方法,用于研究从轻度认知障碍到阿尔茨海默氏病的途径:快速系统评价的方案。 Syst Rev。 2020; 9:1-6。PLOS ONE。2017; 12:E0173372。 10。 Varatharajah Y,Ramanan VK,Iyer R,Vemuri P.使用成像,CSF,遗传因素,认知弹性和人口统计学预测短期MCI至AD进展。 SCI代表。 2019; 9:2235。 11。 Ahmadzadeh M,Christie GJ,Cosco TD,MorenoS。神经影像学和分析方法,用于研究从轻度认知障碍到阿尔茨海默氏病的途径:快速系统评价的方案。 Syst Rev。 2020; 9:1-6。2017; 12:E0173372。10。Varatharajah Y,Ramanan VK,Iyer R,Vemuri P.使用成像,CSF,遗传因素,认知弹性和人口统计学预测短期MCI至AD进展。SCI代表。 2019; 9:2235。 11。 Ahmadzadeh M,Christie GJ,Cosco TD,MorenoS。神经影像学和分析方法,用于研究从轻度认知障碍到阿尔茨海默氏病的途径:快速系统评价的方案。 Syst Rev。 2020; 9:1-6。SCI代表。2019; 9:2235。11。Ahmadzadeh M,Christie GJ,Cosco TD,MorenoS。神经影像学和分析方法,用于研究从轻度认知障碍到阿尔茨海默氏病的途径:快速系统评价的方案。Syst Rev。2020; 9:1-6。
