整流器在正常工作条件下提供负载功率、电池浮充电流和电池充电电流。整流器采用恒功率设计。整流器的额定输出功率为最大。这意味着,在正常工作环境温度范围和输入电压范围内,最大可用输出功率为恒定的 500W 或 1000W(取决于整流器型号)。在这些范围内,整流器根据负载需求以三种模式之一运行。模式之间的转换是完全自动的。如果环境温度高于或输入电压低于可接受值,整流器将继续运行,但输出功率会降低。
可以为 2、3 和 4 串锂离子电池选择恒定输出电压,温度精度为 0.5%。它还可以在 4.2V + 5%/cell 和 4.2V - 5%/cell 之间进行编程,以优化电池容量。当同时为负载和电池充电器供电时,交流适配器的输入电流限制可编程至 3% 以内,以避免交流适配器过载,并允许系统高效利用可用的适配器电源进行充电。它还具有广泛的可编程充电电流。ISL6251、ISL6251A 提供的输出用于监控从交流适配器吸取的电流,并监控交流适配器的存在。ISL6251、ISL6251A 自动从调节电流模式转换为调节电压模式。
输入(电源输出) 输入电压范围 19.00V – 24.00VDC 输入功率 480.00W 最大 输入电流 20.00A 最大 保护 短路电流 应用输出 总输出功率 504.00W 最大(电池模式) 480.00W 最大(电源模式) 输出电流 20.00A 最大 电源管理 自动电源选择,可在外部直流电源和电池之间无缝转换 电池输入/输出 电池充电电压 最高 29.40V 电池充电电流 最高 6.00A 电池充电功率 最高 180.00W 电池放电电流 20.00A 连续 保护 电池短路、过温、过压、过流 待机电流 0.0015A 环境条件
高充电电流,周围温度较高和较高的排放率是电池加热的一些原因。因此,电池可能会遇到热失控的情况,在这种情况下,它产生的热量会导致一系列事件最终导致电池故障。高电池温度也会缩短电池的寿命,并像树突生长一样造成内部危害。在可充电电池中,电池加热是一个常见的问题,尤其是在经常使用或长时间使用的设备中。电池的热量会引起许多问题。电池寿命降低:过量的热量会损害电池的内部组件,从而降低其整体寿命。
电池充电和放电率由Discover Lithium电池和内陆电源设备自动管理。使用太小的电池组使用大型太阳能电池阵列可以超过电池的操作限制,以充电并可能导致BMS触发过度电流的保护。电池容量必须接受系统的最大充电电流,否则充电必须在安装电池的工作限制以下限制。通过将系统中所有逆变器和太阳电荷控制器的电荷容量添加在一起来得出此值。此外,电池峰值的容量必须支持逆变器 - 包将所需的负载所需的激增要求。与所有电池峰电池电流值的总和匹配所有逆变器 - 包将峰值功率值。
锂离子聚合物电池 ▪ 标称电压 3.7V ▪ 聚合物电解质安全性更高 ▪ 产品尺寸和容量范围广(33 至 2800mAh) ▪ 室温下循环寿命:500 次循环后容量达到最小值的 80% 以上 ▪ 与电线、接线片和连接器接触 ▪ 大多数电池型号都集成了安全电路(电线和连接器触点) ▪ 最大充电电流(恒定电流):1.0C ▪ 最大放电电流:1.0C(恒定电流),2.0C(非连续电流) ▪ 宽工作温度范围:-20°C 至 60°C ▪ 自放电:室温下每月 <2% ▪ 大多数 Renata 电池已通过 IEC62133 认证 ▪(其他可根据客户要求提供) ▪ 通过空运进行受控物流 ▪ 由于条件不受控制,不使用长途海运
此参考设计显示了单端主电感转换器(SEPIC)转换器的降压功能的使用。由于输入和输出由电容器分开,因此该拓扑可用于为电池充电带有可变V的电池以及可变V OUT。使用同步峰值电流模式控制器LM5122;该IC可以通过级别移动(RCD网络)驱动高侧同步FET。通过将9-V至36-V输入施加,该板可用于为两个电压范围为8 V至28 V,最大2-A充电电流或简单用作标准的恒定电压电源。输出电压和电流的两个设定点都是通过两个修剪器定义的,即使两个参考文献也可以通过使用两个数字到Analog转换器来代替。