背景:观察到异常的DNA甲基化是乳腺癌发生的早期事件。但是,这种变化是如何出现的。microRNA(miRNA)在转录后水平调节基因表达,并在各种生物过程中起关键作用。在这里,我们整合了miRNA表达和CpGS的DNA甲基化,以研究miRNA如何影响乳腺癌甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基,以及DNA甲基化如何调节miRNA表达。方法:来自两个乳腺癌队列的miRNA表达和DNA甲基化数据(n = 297)和癌症基因组地图集(n = 439),通过一种相关方法整合,我们将miRNA-甲基化定量定量性状特征基因座(MIMQTL)分析。层次聚类用于鉴定miRNA和CPG的簇,这些聚类通过分析mRNA/蛋白质表达,临床病理学特征,在硅氧化液反应,染色质状态和可及性,转录因子结合和长期相互作用数据中进一步表征。
坏死性小肠结肠炎 (NEC) 是一种多因素致病的严重疾病,会影响早产儿的肠道,导致高发病率和死亡率。幸存的婴儿会面临多种长期后遗症,包括神经发育障碍 (NDI)——包括认知和社会心理缺陷以及运动、视力和听力障碍。肠脑轴 (GBA) 稳态的改变与 NEC 的发病机制和 NDI 的发展有关。GBA 上的串扰表明微生物失调和随后的肠道损伤可引发全身性炎症,随后是具有多条通路的致病信号级联,最终通向大脑。这些信号到达大脑并激活大脑中的炎症级联,导致白质损伤、髓鞘形成受损、头部生长延迟以及最终的下游 NDI。本综述的目的是总结 NEC 中观察到的 NDI,讨论有关 GBA 的已知信息,探索 NEC 环境中 GBA 与围产期脑损伤之间的关系,最后强调现有的可能治疗方法的研究,以帮助防止这些有害后果。
毫无疑问,细胞信号操控是抗癌治疗的关键策略。此外,细胞状态决定药物反应。因此,建立细胞状态和治疗敏感性之间的关系对于癌症疗法的发展至关重要。在个性化医疗时代,使用患者来源的离体细胞模型是将关键研究成果转化为临床应用的一种有前途的方法。在这里,我们专注于细胞对抗癌治疗耐药性的非致癌基因依赖性。使用一组具有各种干细胞和 EMT 相关标志物、不同程度的 ERK1/2 和 AKT 磷酸化以及对抗癌治疗反应的患者肺肿瘤衍生细胞系研究了对 MEK/ERK 和 PI3K/AKT 通路抑制剂(关键细胞功能调节剂)的反应信号相关机制。研究激酶之间的相互作用是我们研究的目标。尽管 MEK/ERK 和 PI3K/AKT 相互作用被认为是细胞系特异性的,其中致癌突变起着决定性作用,但我们证明了所有研究的细胞系中 MEK/ERK 和 PI3K/AKT 信号通路之间存在负反馈回路,无论基因型和表型差异如何。我们的研究表明,各种不同的 ERK 信号抑制剂(selumetinib、trametinib 和 SCH772984)可增加 AKT 磷酸化,相反,AKT 抑制剂(capivasertib、idelalisib 和 AKT 抑制剂 VIII)可增加对照细胞和顺铂治疗细胞中的 ERK 磷酸化。然而,激酶之间的相互作用取决于细胞状态。 ERK 和 AKT 之间的反馈被局部粘连激酶抑制剂 PF573228 减弱,并且在悬浮生长的细胞中也是如此,这表明细胞外接触在调节激酶之间的串扰方面可能发挥着作用。此外,研究表明,MEK/ERK 和 PI3K/AKT 信号通路之间的相互作用可能取决于化疗刺激的强度。该研究强调了抗癌治疗期间细胞的空间位置和治疗强度的重要性。
摘要:脂肪组织先前被视为脂质储存的休眠器官,直到1990年代初期鉴定脂联素和瘦素为止。这一启示揭示了脂肪组织的动态内分泌功能,这进一步扩展了。脂肪组织近几十年来一直是一种多功能器官,在能量代谢和稳态中起着重要作用。目前,很明显,脂肪组织主要通过分泌多种信号分子(称为脂肪因子)来执行其功能。除了它们在能量消耗和代谢调节中的关键功能外,这些脂肪因子对多种生物学过程产生了重大影响,包括但不限于炎症,温度调节,免疫反应,血管功能,血管功能和胰岛素敏感性。脂肪因子在调节脂肪组织中的众多生物过程方面至关重要,并促进脂肪组织与各种器官(包括大脑,肠道,胰腺,胰腺,内皮细胞,肝脏,肌肉等)之间的通信。失调的脂肪因子与肥胖和糖尿病等几种代谢疾病以及心血管疾病有关。在本文中,我们试图描述脂肪因子在发展代谢和心血管疾病中的重要性,并强调了它们在脂肪组织,其他组织以及其他组织和器官之间的串扰中的作用。
虽然具有长相干时间的数据量子比特对于量子信息的存储至关重要,但辅助量子比特对于容错量子计算的量子纠错 (QEC) 至关重要。光镊阵列的最新发展,例如大规模量子比特阵列的制备和高保真门操作,为实现 QEC 协议提供了潜力,而下一个重要挑战之一是控制和检测辅助量子比特,同时尽量减少原子损失和串扰。在这里,我们介绍了由双同位素镱 (Yb) 原子阵列组成的混合系统的实现,其中我们可以利用费米子 171 Yb 的核自旋量子比特作为数据量子比特,利用玻色子 174 Yb 的光时钟量子比特作为辅助量子比特,具有无损量子比特读出能力。我们评估了量子比特之间的串扰对 174 Yb 成像光的核自旋量子比特相干性的影响。对于 174 Yb 的 Hahn 回波序列,使用 399 nm 探针和 556 nm 冷却光束,我们观察到在 20 ms 曝光下保留了 99.1 (1.8)% 的相干性,产生了 0.9992 的鉴别保真度和 0.988 的生存概率。使用 556 nm 探测光束的 Ramsey 序列对相干性的影响可以忽略不计,这表明未来低串扰测量可能会有所改善。这一结果凸显了混合 Yb 原子阵列在基于辅助量子比特的 QEC 协议的中路测量中的潜力。
生物生物体中的触感是一种依赖各种专业受体的教师。这项研究中介绍的双峰传感皮肤,结合了将皮肤归因于机械和热感受器功能的软电阻复合材料。模仿不同自然受体在皮肤层的不同深度中的位置,可以实现软电阻式组合的多层布置。然而,信号响应的大小和刺激的定位能力随双峰皮肤的较轻压力而变化。因此,采用了一种基于学习的方法,可以帮助您对4500探针的刺激进行预测。类似于人脑中的认知功能,两种类型的感觉信息之间的感觉信息的串扰使学习体系结构可以更准确地预测刺激的定位,深度和温度。使用8机械感受器和8个热感应感应元素的定位精度为0.22 mm,温度误差为8.2°C,对于较小的元素间距离实现了。将双模态感测多层皮肤与神经网络学习方法结合起来,使人造触觉界面更接近地模仿生物皮肤的感觉能力。
静电定义的半导体量子点阵列为量子计算和量子模拟提供了一个有前途的平台。然而,栅极电压与点电位和点间隧道耦合的串扰使器件参数的调整变得复杂。到目前为止,点电位的串扰通常使用所谓的虚拟门来有效地补偿,虚拟门是物理栅极电压的特定线性组合。然而,由于隧道耦合对栅极电压呈指数依赖性,目前通过缓慢的迭代过程来补偿隧道屏障的串扰。在这项工作中,我们表明,可以利用相同的指数依赖性适用于所有栅极这一事实,有效地表征和补偿隧道屏障上的串扰。我们展示了四重量子点阵列中串扰的有效校准,并定义了一组虚拟屏障门,通过它们我们展示了对所有点间隧道耦合的正交控制。我们的方法标志着大规模量子点阵列调谐过程的可扩展性迈出了关键一步。
1)随着分布式光伏统筹上网电价逐年下降以及储能系统成本降低,建设分布式+储能系统实现 分布式电源全部就地消纳具有较好的经济效益,同时利用储能系统每天“两充两放”的特性, 合理利用阶梯电价,提高系统效益。With the distributed PV grid prices and the energy storage system cost decreasing every year, there is good economic benefit to build the distributed + energy storage system to achieve all the local power consumption, and because the energy storage system charges and discharges twice every day, the step tariff , if well employed, can increase the system benefit. 2)通过能量管理系统控制分布式电源+储能系统平滑输出,减小外部气象条件对分布式电源输 出的影响,提高供电电能质量。Achieving smooth output from the distributed power supply + energy storage system by the energy management system, reducing the impact to the distributed power output from the external weather conditions and improving the quality of power supply. 3)通过分布式电源+储能系统组成并网型微电网系统,当电网故障时,自动切换至独立运行模 式,保持重要负荷连续供电/或者利用储能系统代替企业原有设计起到后备电源(UPS)的作 用。When the grid breaks down, the microgrid system that is composed of the distributed power supply + energy storage system automatically switches to stand-alone mode, which maintains continuous power supply or uses energy storage system to replace the UPS in the original design.
DNA结构设计通过人工扩展的基本对字母(包括循环和不匹配热力学参数)Tuan M. Pham 1,§,Terrel Miffin 2,§,Hongying Sun 3,§,肯尼斯·K·肯尼斯·K·肯尼斯·K·夏普2,Xiaoyu wang 2,米格尼Jason D. Kahn 2*和David H. Mathews 1*摘要:我们表明,通过将基本配对字母扩展到A-T和G-C之外,可以改善DNA二次结构的硅设计中,以包括2-氨基-8--(1'-β-β-D-2-2'-deoxyrabofuranosyl)之间的一对 - )-4-和6-氨基-3-(1'-β-d-2'-脱氧核糖核基)-5-硝基 - (1 H)-Pyridin-2-One,简单p和Z。为了获得在设计中包括P-Z对所需的热力学参数,我们进行了47个光学熔化实验,并将结果与先前的工作结合在一起,以适合P-Z对和G-Z摇摆对的一组新的自由能和焓最接近的邻居折叠参数。我们发现G-Z对具有与A-T对相当的稳定性,因此应通过结构预测和设计算法进行定量考虑。此外,我们推断了循环,末端不匹配和悬挂端参数的集合,以包括P和Z核苷酸。这些参数已纳入用于辅助结构预测和分析的RNAstructure软件包。使用RNAstructure设计程序,我们使用ACGT字母或补充P-Z对提出的100个设计问题中的99个。通过归一化的集合缺陷(NED)评估,延长了字母,降低了序列折叠成脱靶结构的倾向。延长了字母,降低了序列折叠成脱靶结构的倾向。在提供Eterna-player溶液中的91个情况中,有91个中的91例中,NED值相对于来自Eterna示例解决方案的值提高了。含P-Z的设计的平均NED值为0.040,明显低于仅标准DNA设计的0.074,并且包含P-Z Pairs会减少在设计上收敛所需的时间。这项工作提供了将任何扩展的字母核苷酸纳入预测和设计工作流中的样本管道。关键词:DNA二级结构设计,合成生物学,DNA折叠热力学,扩展的DNA字母
免疫系统,干细胞是免疫茎细胞串扰中的活跃参与者。可以很好地确定肠道或神经干细胞可以通过分泌抗炎因子2,4来调节免疫系统。此外,已经表明,干细胞可以根据其活性水平改变主要组织相容性复合物I(MHC-I)的表面表达来调节其免疫特权状态,因此可以通过CD8 +细胞毒素细胞5。因此,免疫系统和组织驻留干细胞之间的双向串扰对于维持组织完整性和驱动再生至关重要1。然而,这种串扰直到最近才在中枢神经系统(CNS)中探索。与其他组织不同,中枢神经系统在解剖学上受到血脑屏障的保护,支持中枢神经系统是免疫特你的器官6。因此,对免疫 - 茎细胞串扰的调查集中在破坏这种障碍的病理情况上。免疫特权中枢神经系统的概念现在受到了在发育和成年期在健康实质中的外周免疫细胞以及Discoveryf脑膜淋巴管10,11的挑战。此外,在健康的中枢神经系统中已经确定了自适应免疫细胞,它们可以改变CNS干细胞行为12,13。这些报告突出了CNS干细胞和免疫系统串扰的新作用,超出了病理状况,为解决中枢神经系统开发,体内平衡和修复的串扰打开了大门。在这篇综述中,我们将把注意力集中在CNS免疫茎细胞轴上在神经炎症和髓磷脂再生的情况下的作用。