在过去十年中,已经开发出许多太阳能预测工具来预测光伏 (PV) 发电场的发电量。通过将预测与测量的太阳能数据进行比较来评估太阳能预测的质量。然而,这种方法没有考虑预测对其应用的附加值。因此,考虑到这个评估框架,预测的改进能带来什么价值?为了回答这个问题,这项工作比较了不同运行太阳能预测对特定应用的价值。目的是寻找经济价值与评估预测质量所定义的误差指标之间的关系。新一代大型光伏电站集成了 ESS。目的是增加将生产注入电网的灵活性,从而利用电力市场提供的可能性(例如能源套利)来实现利润最大化。为了优化这些特定 ESS 的运行,预测太阳能生产至关重要。本研究考虑的案例是澳大利亚能源市场背景下与锂离子电池相关的数兆瓦大型光伏发电场。对于这一特定案例研究,结果表明,基于平均绝对误差 (MAE) 评估预测质量的指标与应用预测带来的经济收益几乎呈线性关系。更准确地说,MAE 提高 1% 大约可使经济收益增加 2%。
电子邮件地址:paul.ortiz@univ-lorraine.fr (Paul Ortiz)、s.kubler@univ-lorraine.fr (Sylvain Kubler)、eric.rondeau@univ-lorraine.fr (Éric Rondeau)、jean-philippe.georges@univ-lorraine.fr (Jean-Philippe Georges)、G.Colantuono@leedsbeckett.ac.uk (Giuseppe Colantuono)、A.Shukhobodskiy@leedsbeckett.ac.uk (Alexander Alexandrovich Shukhobodskiy)
R.Power 是欧洲领先的独立可再生能源生产商,业务遍及波兰、罗马尼亚、意大利、葡萄牙、西班牙和德国。该公司专门开发公用事业规模的太阳能发电厂、储能系统 (BESS) 和风力发电场。R.Power 的业务涵盖整个可再生能源价值链,包括项目开发、建设(工程、采购和建设)、工厂运营和维护 (O&M) 以及作为独立电力生产商 (IPP) 的可再生能源生产。该公司目前拥有一系列运营和在建项目,总容量超过 1 GW,以及 7 GW 具有安全电网连接条件的项目,计划在未来 3 到 4 年内开发。此外,R.Power 正在推进总容量接近 30 GW 的项目。通过其子公司 Quanta Energy,R.Power 还提供
大型的,安装的光伏太阳能项目(GPV)在全球范围内迅速扩展,这是由于它们在缓解气候变化中的重要作用以及向低碳经济的过渡。随着全球跟踪系统的预计,到2050年,预计每年将每年增加32%的能力,了解其生态影响,包括其运营和管理(O&M)的生态影响,但仍在研究中。这项研究介绍了通过常规割草管理的传统单轴GPV中微气候和植被镶嵌物的首次全面评估。在加利福尼亚州的大中央山谷(美国)中,我们开发了一个新型的实验框架,以表征五个不同的“微观点”,该框架捕获了由跟踪PV系统和O&M调制的小气候和植被区域的完整范围。在一个12个月的时间内,我们监视了这些微斑点上的9个上下地下微气候变量和16个植物生态指标。在PV面板下,光合活性辐射降低了89%,风速降低了46%,而GPV足迹内的开放空间显示出更大的土壤表面温度(+2.4°C),并且在干旱期间表现出加速的水分损失(+8.5%)。此外,PV面板旋转全天影响着阴影模式,从而导致空气温度和蒸气压力不足的时间变化。植物调查确定了37种,其中86%是非本地的。显着跨微观植被的差异表明GPV驱动植物群落组成,结构和生产力的变化。与开放空间相比,PV阵列占地面积附近和内部的植被显示出更大的物种丰富度(+8.4%),最高高度(+21%),减少阳光植物的覆盖率(-71%)(-71%)以及较少的死亡生物量积累(-26%),来自阴影驱动的效果。这些发现表明,考虑了微分特定的维护策略和基于自然的解决方案,以控制侵入性,外来的植物物种,赋予增强运营,生态和社会经济可持续性的机会,同时恢复气候变化和生物多样性损失的双胞胎危机。
爱尔兰可持续能源局 SEAI 是爱尔兰的国家能源局,负责投资并提供适当、有效和可持续的解决方案,帮助爱尔兰过渡到清洁能源的未来。我们与房主、企业、社区和政府合作,通过专业知识、资金、教育计划、政策建议、研究和新技术开发来实现这一目标。SEAI 由爱尔兰政府通过通信、气候行动和环境部资助。© 爱尔兰可持续能源局 家用太阳能光伏计划 家用太阳能光伏计划在微型发电支持计划 (MSS) 下运作,并为房主购买和安装太阳能光伏系统提供补助。这采取一次性付款的形式,根据安装符合计划要求的产品向房主付款。本文档描述了计划下合格系统必须满足的要求。 版本控制
I。i ntroduction浓缩光伏(CPV)技术依赖于阳光的浓度在小(通常是mm 2至cm 2)和高效(III-V基于III-V的,通常为三连接)的细胞上。但是,这种技术成本仍然太高,无法被广泛采用。一种新兴方法包括微型化模块维度(Micro-CPV)。亚毫米多插根单元是这种创新技术的核心,因为它们可以克服使标准CPV不受欢迎的某些局限性。低温操作是高电性能和提高可靠性的关键。由于其较小的尺寸,可以用微型细胞提供更轻松的热管理策略[1]。此外,较小的细胞显示出较小的电阻损失,因此在非常高的浓度下,在理论上可以实现较高的效率。
抽象背景:旋转阳极X射线源的允许输入功率密度受到可用目标材料的性能的限制。尽管使用临床实践的变化,但使用的用于焦点表面温度的简化公式忽略了管电压。如本工作所提出的那样,改进了电子传输和靶标侵蚀的建模,可改善X射线输出降解对X射线输出降解,绝对X射线剂量输出以及诊断成像的质量和Orthovolt Cancer Cherapy的质量,用于广泛的技术因素。目的:改进电子功率吸收的建模以包括体积效应和表面侵蚀,以提高对X射线输出降低的理解,增强X射线管的可靠性并安全地扩大其使用场。方法:我们结合了蒙特卡洛电子传输模拟,耦合的热弹性有限元建模,侵蚀引起的表面粒度以及热物理和热机械目标特性的温度依赖性。提出了半经验的热机械标准来预测目标侵蚀。我们模拟了侵蚀的钨 - 侵蚀目标的吸收电子功率,并用带有球形单层的toge靶模仿,并与原始目标进行比较。Results: The absorbed electronic power and with it the conversion efficiency varies with tube voltage and the state of erosion.With reference to 80 kV (100%), the absorption of a severely eroded relative to a pristine target is 105% (30 kV), 99% (100 kV), 97% (120 kV), 96% (150 kV), 93% (200 kV), 87%(250 kV)和79%(300 kV)。我们表明,尽管表面加热的简单的müller -oosterkamp模型低估了较高的管电压相对于在80 kV下的运行的好处,但该误差限制为30 kV的误差低于-6%(建议还原),而300 kV + 13%(输入功率增加允许)。结论:纠正侵蚀目标材料的X射线转换效率,通常无法通过测量管电流来访问,这可能意味着对现有的X射线剂量计算进行校正。随着管电压增加的旋转阳极X射线试管的相对增加,其量大的电压易于预测的agnosmmüller– oosterkamp age agnosism age age agnosism age agnosism age age ageostermism age age age agnosism age age age age age agnosism agn依赖性的依赖性依赖于焦距的依赖性,这显着的量加热模型要小得多。钨孔和粒度的扩散率随着管电压增加的旋转阳极X射线试管的相对增加,其量大的电压易于预测的agnosmmüller– oosterkamp age agnosism age age agnosism age agnosism age age ageostermism age age age agnosism age age age age age agnosism agn依赖性的依赖性依赖于焦距的依赖性,这显着的量加热模型要小得多。钨孔和粒度的扩散率
目前,喀麦隆的电力缺口估计为 50 吉瓦时。这种缺口的特点是频繁甚至长时间停电,扰乱了经济和社会生活。为了克服电力短缺,喀麦隆决定利用其可再生能源潜力生产 3000 兆瓦的电能。事实上,喀麦隆的年太阳辐射量从 4.28 千瓦时/平方米/年到 5.80 千瓦时/平方米/年不等。喀麦隆拥有 2500 万公顷森林,覆盖了其四分之三的领土,是撒哈拉以南非洲第三大生物量潜力国。此外,极北地区牛、山羊、绵羊和猪的饲养活动十分活跃,饲养量达数百万头,产生大量粪便。因此,本文首次使用 HOMER Pro 研究了两种混合系统方案的技术经济可行性,即光伏/燃料电池/电解器/沼气(方案 1)和光伏/电池/燃料电池/电解器/沼气(方案 2),用于马鲁阿市的能源和氢气生产,马鲁阿市被认为是喀麦隆阳光最充沛的地区(极北地区)。本设计结合使用电解器、燃料电池和氢气罐,以减少电池存储需求。本研究考虑了三种类型的家庭用电需求社区(低、中、高消费者)。结果表明,对于低能耗社区,场景 1 的最佳系统架构包括 144 kW 光伏组件、15 kW 沼气发电机、11 kW 转换器、15 kW 电解器、15 kW 燃料电池和 5000 kg 氢气罐,采用循环充电 (CC) 调度策略。对于场景 1 的中等能耗社区,879 kW 光伏组件、15 kW 沼气发电机、31.9 kW 转换器、24 kW 燃料电池、24 kW 电解器和 5000 kg 氢气罐采用 CC 调度策略是最佳混合系统。对于场景 1 的高能耗社区,11,925 kW 光伏组件、15 kW 沼气发电机、570 kW 转换器、266 kW 燃料电池、266 kW 电解器和 25,000 kg 氢气罐采用 CC 调度策略是最佳混合系统。对于场景 2,以下架构是最佳混合系统:对于低消费者,138 kW 光伏模块、15 kW 沼气发电机、27.2 kW 转换器、15 kW 燃料电池、15 kW 电解器、5000 kg 氢气罐和 480 个电池蓄电池,采用 CC 调度策略;对于中等消费者,234 kW 光伏模块、15 kW 沼气发电机、57.8 kW 转换器、24 kW 燃料电池、24 kW 电解器、5000 kg 氢气罐和 1023 个电池蓄电池,采用负载跟踪 (LF) 调度策略;对于高耗能者,820 kW 光伏组件、15 kW 沼气发电机、405 kW 转换器、266 kW 燃料电池、266 kW 电解器、25,000 kg 氢气罐和 9519 个电池储能系统,并采用 CC 调度策略。情景 1 的平准化能源成本 (LCOE) 分别为 0.871 美元/kWh、0.898 美元/kWh 和 1.524 美元/kWh,针对情景 1,氢的平准化成本 (LCOH) 分别为低、中、高消费者社区的 7.66 美元/千克、4.95 美元/千克和 0.45 美元/千克。针对情景 2,氢的平准化成本 (LCOH) 分别为低、中、高消费者社区的 3.06 美元/千克、1.34 美元/千克和 0.15 美元/千克。从优化结果还得出结论,水电解器、燃料电池和氢气罐的组合
摘要。使用多种能源抽水是偏远或干旱地区供应饮用水的理想解决方案。本文介绍了一种用于农业的独立光伏电池抽水系统的有效控制和能源管理策略。该系统由光伏太阳能电池板作为主要能源,铅酸电池作为次要能源,为无刷直流电机和离心泵供电。能源管理策略使用智能算法来满足电机所需的能量,同时将电池的充电状态保持在安全范围内,以消除电池完全放电和损坏。漂移是光伏系统中的一个主要问题;当太阳辐射快速变化时,就会发生这种现象。经典的 MPPT 算法无法解决这个问题,因此实施了改进的 P&O,与传统的 P&O 相比,所得结果显示了该算法的效率。计算机模拟结果证实了随机气象条件下所提出的能量管理算法的有效性。关键词:能量管理策略、光伏发电机、MPPT、改进的P&O、DC-DC转换器、电池、无刷直流电机、离心泵。
本文重点研究了基于模型预测控制 (MPC) 的智能微电网能源调度,该微电网配备不可控(即具有固定功率分布)和可控(即具有灵活和可编程操作)电器、光伏 (PV) 电池板和电池储能系统 (BESS)。所提出的控制策略旨在同时优化规划可控负载、共享资源(即储能系统充电/放电和可再生能源使用)以及与电网的能源交换。控制方案依赖于迭代有限时域在线优化,实施混合整数线性规划能源调度算法,以在随时间变化的能源价格下最大化太阳能自给率和/或最小化从电网购买能源的每日成本。在每个时间步骤中,解决由此产生的优化问题,提供可控负载的最佳运行、从电网购买/向电网出售的最佳能源量以及 BESS 的最佳充电/放电配置。
