研究计划我们使用化学生物学方法来分析细胞生物学,成像和生物化学中的概念障碍,然后设计功能性的小分子试剂来克服它们。我们使用有机化学来合成这些试剂,然后将其应用于从生物物理学的研究到细胞和体内生物学的能力。主要主题:(1)可拍照的抑制剂和材料:生物学和软物质的高精度工具; (2)癌症中的化学诊断和前药,以利用氧化还原和代谢; (3)驱动光学成像的新化学方法:超分辨率,探针,光声。重复的方法还包括:(a)光化学,用于光反应材料和成像; (b)用于高精度药物应用的化学生物学和细胞生物学技术。
叶绿素荧光发射是由吸收的光能引起的,这些光能不会以热量的形式消散,也不会用于植物的光合作用反应。光合作用分为两个不同的部分,即光反应和二氧化碳 (CO 2 ) 固定。在光反应中,光能被用来生成氧化蛋白质复合物,该复合物能够在光系统 II (PSII) 中从水中提取电子,同时重新激发提取的电子以还原光系统 I (PSI) 中的 NADP +。这些“光收集”反应导致 ATP 和还原力(还原铁氧还蛋白和 NADPH)的形成,随后通过卡尔文 - 本森 - 巴沙姆循环进行 CO 2 固定。叶绿素 a 荧光分析可以确定直接用于光化学的吸收光能量,并估计生物或非生物胁迫下的光合作用效率 ( Moustakas 等人,2021 年;Moustakas,2022 年)。叶绿素 a 荧光信号可以根据光合作用活性进行解释,以获得有关光合作用机构状态的信息,尤其是光系统 II (PSII) 的状态信息 ( Murchie 和 Lawson,2013 年;Moustakas 等人,2021 年)。叶绿素荧光测量已广泛用于探测光合作用机制的功能和筛选不同作物以耐受各种压力和营养需求(Guidi 和 Calatayud,2014 年;Kalaji 等人,2016 年;Sperdouli 等人,2021 年;Moustakas 等人,2022a 年)。使用脉冲幅度调制 (PAM) 方法可以主要计算引导至 PSII 进行光化学反应的吸收光能量,这些能量通过非光化学猝灭 (NPQ) 机制以热量形式耗散或通过不太明确的非辐射荧光过程耗散,分别标记为 F PSII 、F NPQ 和 F NO ,它们的总和等于 1(Kramer 等人,2004 年)。在本研究中,我们总结了本期特刊中的文章,为读者更新了该主题,并讨论了叶绿素荧光的当前应用
视紫红质基因 RHO 的突变是常染色体显性视网膜色素变性 (adRP) 的很大一部分原因。患者在临床上分为两类:一类是早发性全视网膜光感受器变性,另一类是病情缓慢进展的患者。后一类患者适合接受光感受器定向基因治疗,而前一类患者则适合将光反应蛋白递送至中间神经元或视网膜神经节细胞。RHO adRP 的基因治疗可能针对 DNA 或 RNA 水平的突变基因,而其他疗法则保留光感受器的活力而不解决潜在的突变。在动物模型中,纠正 RHO 基因和替换突变 RNA 显示出良好的前景,而维持可行的光感受器有可能延缓中央视力的丧失,并可能保留光感受器以进行基因定向治疗。
金属卤化物钙钛矿已成为光电学中改变游戏规则的半导体材料。作为一种有效的微型/纳米制造技术,直接激光写作(DLW)已广泛用于佩洛维斯基特(Perovskites)制造模式,微/纳米结构和像素阵列,以促进其光电的应用。由于钙钛矿的独特离子特性和柔软的晶格,DLW可以引入丰富的光 - 单词相互作用,包括激光消融,结晶,离子迁移,相位分离,光反应和其他过渡,从而启用了植物性质的多样性功能。基于它们的图案结构,钙棍蛋白酶在显示器,光学信息加密,太阳能电池,发光二极管,激光器,光电探测器和平面透镜中都有许多应用,在本综述中对此进行了全面讨论。最后,我们讨论了这个迷人领域的未来发展必须解决的挑战。
对超快自旋动力学的理解对于将来的超快和能量效率磁性记忆和存储应用至关重要。我们研究了COFEB/MGO/COFEB磁性隧道连接点(MTJ)的超快激光诱导的磁光反应,当时用短激光脉冲令人兴奋,这是磁性配置和泵送的函数。MTJ的超快速磁化在0.33–0.37 PS的时间尺度上迅速下降,这是由电子旋转散射和旋转转运相互驱动的。随后,通过电子– Phonon和Spin -Phonon相互作用分别以1.5-2.0和5.0–15.0 ps的时间尺度转移到电子和自旋储层的能量转移到晶格中。我们的结果表明,COFEB/MGO/COFEB的界面自旋方向可以调节自旋和声子之间的相互作用常数。这些发现提供了对MTJ接口在自旋动力学中的作用的洞察力,这将有助于Opto-Spintronic Tunnel Junction Junction堆栈设计和应用。
照片开关是在光线激发后在异构体之间可逆的分子。自然存在的光异构分子的关键例子是视网膜,它经历了吸收光子的z / e同组化,该光子启动了负责视觉的细胞信号传导级联。1 During the last century, chemists have designed a myriad of arti cial photoswitch structures: azobenzenes, 2 (sti ff -)stilbenes, 3 indi- goids, 4 diarylethenes, 5 norbornadienes/quadricyclanes, 6 spi- ropyrans/merocyanines, 7 and donor – acceptor Stenhouse adducts (DASAs), 8 to name一些(图1a)。同组化时开关变化的理化特性,并引起光反应函数。例如,可以利用Azobenzenes,Stilbenes和Indigoid的E - Z异构体来控制分子系统的超分子相互作用或将菌株诱导到宏观材料中。另一方面,日钟甲烯和螺旋形的电循环分别改变了这些分子的结合和偶极矩。这些现象可以在医学分子或宏观水平上运行的光响应系统中被利用,9个生物科学,10,11催化,12
照片开关是在光线激发后在异构体之间可逆的分子。自然存在的光异构分子的关键例子是视网膜,它经历了吸收光子的z / e同组化,该光子启动了负责视觉的细胞信号传导级联。1 During the last century, chemists have designed a myriad of arti cial photoswitch structures: azobenzenes, 2 (sti ff -)stilbenes, 3 indi- goids, 4 diarylethenes, 5 norbornadienes/quadricyclanes, 6 spi- ropyrans/merocyanines, 7 and donor – acceptor Stenhouse adducts (DASAs), 8 to name一些(图1a)。同组化时开关变化的理化特性,并引起光反应函数。例如,可以利用Azobenzenes,Stilbenes和Indigoid的E - Z异构体来控制分子系统的超分子相互作用或将菌株诱导到宏观材料中。另一方面,日钟甲烯和螺旋形的电循环分别改变了这些分子的结合和偶极矩。这些现象可以在医学分子或宏观水平上运行的光响应系统中被利用,9个生物科学,10,11催化,12
1. Z. Wei、R. Bai,“光活性液晶弹性体的温度调节光机械驱动”。极端力学快报,2022 年。2. R. Bai、E. Ocegueda、K. Bhattacharya,“光活性半结晶聚合物中的光化学诱导相变”。物理评论 E,2021 年。3. M. Hua、C. Kim、Y. Du、D. Wu、R. Bai、X. He,“摇摆凝胶:基于动态屈曲的化学机械自振”。物质,2021 年。4. R. Bai、YS Teh、K. Bhattacharya,“固态光反应动力学和平衡中的集体行为”。 Extreme Mechanics Letters,2021 年。5. R. Bai、K. Bhattacharya,“光活性向列弹性体中的光机械耦合”。固体力学与物理学杂志,2020 年。6. J. Yang、J. Steck、R. Bai、Z. Suo,“拓扑粘附 II。可拉伸粘附”。Extreme Mechanics Letters,2020 年。
摘要:等离子体诱导光催化是一种降低传统热分解温度的有效方法,已被用于甲烷脱氢。本文,我们利用时间相关密度泛函理论,通过分子轨道洞察,探讨了等离子体诱导甲烷在四面体 Ag 20 纳米粒子上解离的微观动力学机制。我们巧妙地通过 Hellmann-Feynman 力建立了化学键和分子轨道之间的关系。时间和能量分辨的光载流子分析表明,由于 Ag 纳米粒子和 CH 4 轨道的强杂化,在低激光强度下,从 Ag 纳米粒子到甲烷的间接热空穴转移主导光反应,而间接和直接电荷转移共存,促进甲烷在强激光场中的解离。我们的研究结果可用于设计新型甲烷光催化剂,并强调了分子轨道方法在吸附质-底物体系中的广阔前景。关键词:局域表面等离子体、甲烷脱氢、光载流子动力学、分子轨道洞察、实时时间相关密度泛函理论
摘要:随着单原子引入光催化,基底电子和几何结构的微小变化可以带来更高的能量转换效率,而其背后的微观动力学却很少被阐明。本文采用实时时间相关密度泛函理论,探索了微观尺度上单原子光催化剂(SAPC)在水分解中的超快电子和结构动力学。结果表明,与传统光催化剂相比,负载在石墨相氮化碳上的单原子Pt大大促进了光生载流子,并有效地将激发电子与空穴分离,延长了激发载流子的寿命。灵活的氧化态(Pt 2+ 、Pt 0 或Pt 3+ )使单原子作为活性位点来吸附反应物并在光反应过程的不同阶段作为电荷转移桥催化反应。我们的研究结果为单原子光催化反应提供了深刻的见解,并有利于高效SAPC的设计。关键词:单原子光催化剂、热电子/空穴电荷转移、超快载流子和结构动力学、时间相关密度泛函理论、水分解