目标 提供有关 MEMS 技术和制造的基本知识。 课程目标 本课程应使学生能够: 1. 了解微制造的演变。 2. 学习各种制造技术。 3. 了解微传感器和微执行器。 4. 学习各种微执行器的设计。 第一单元简介(9 小时) 基本定义 – 微制造的演变 – 微系统和微电子学,缩放定律:静电力、电磁力、结构刚度、流体力学和传热的缩放。 第二单元微传感器(9 小时) 简介 – 微传感器:生物医学传感器和生物传感器 – 化学传感器 – 光学传感器 – 压力传感器 – 热传感器、声波传感器。 第三单元微执行器(9 小时) 微驱动:使用热力、压电晶体、静电力进行驱动。基于 SMA 的微执行器,微执行器:微夹钳、微电机、微阀门、微泵、微加速度计 - 微流体。第四单元 MEMS 制造技术(9 小时)MEMS 材料:硅、硅化合物、压电晶体、聚合物微系统制造工艺:光刻、离子注入、扩散、氧化、CVD、溅射、蚀刻技术。第五单元微加工(9 小时)微加工:体微加工、表面微加工、LIGA 工艺。封装:微系统封装、基本封装技术、封装材料选择。
肠道菌群越来越被认为是肠粘膜中血管发育和内皮细胞功能的致动变量,但也影响远程器官的微脉管系统。在小肠中,用肠道菌群定殖以及随后的先天免疫途径的激活促进了复杂的毛细血管网络和乳乳的发展,从而影响了肠道的完整性 - 血管屏障的完整性以及营养摄取。由于肝脏通过门户循环产生大部分的血液供应,因此肝微循环稳步遇到微生物元素衍生的模式和主动信号代谢物,这些代谢产物会诱导肝弦正弦内皮的组织变化,从而影响正弦的免疫分化并影响代谢过程。,此外,微生物群衍生的信号可能会影响远处器官系统(例如大脑和眼睛微血管)的脉管系统。近年来,这个肠道居民的微生物生态系统被揭示出有助于几种血管疾病表型的发展。
“用于模拟血管屏障的器官芯片(OoC)设备的开发”的研究。主要活动:• 培养原代和永生化人体细胞:内皮细胞、周细胞和星形胶质细胞。 • 微流体装置的制造方法:微流体图案的紫外光刻、PDMS 复制成型工艺、等离子键合和硅烷化。 • 开发流动条件下芯片上细胞共培养的协议 • 开发芯片上细胞固定和染色的流动过程。 • 通过荧光和共聚焦显微镜进行表征。 • 通过使用平板读数器进行荧光和/或吸光度测量,用分子示踪剂对屏障模型进行渗透性测试。 • 准备用于片上欧姆电阻测量的定制装置。
1)N。Gerges,C。Petit-Etienne,M。Panabière,J。Boussey,Y。Ferrec,C。Gourgon;优化的紫外线灰度工艺,用于应用于光谱成像仪的高垂直分辨率; J. Vac。SCI。 技术。 b 39(2021); doi:10.1116/6.0001273SCI。技术。b 39(2021); doi:10.1116/6.0001273
K. Kobayashi,K。Utaka,Y。Abe和Y. Suematsu,“ CW运行1.5〜1.6M波长GainASP/INP掩埋 - 异位结构集成了带有分布的Bragg反射器的双向旋转激光器,” Electron,Electron。Lett。,卷。 17,否。 11,pp。 366-368,1981。Lett。,卷。17,否。11,pp。366-368,1981。
腰椎间盘突出症是疼痛和残疾的主要原因之一,影响成年人口的1%至5%,尤其是30至50岁之间。保守治疗包括皮质类固醇,抗炎和物理疗法,并保留手术治疗难治性病例。手术并发症是可能的,包括疼痛和神经后遗症。本研究介绍了一名49岁患者的外椎间盘突出症的临床病例,该患者接受了原生物学治疗(IPRF),超螺旋激光和脉冲磁场,从而改善了症状,并通过磁共振成像确认了疝气过程。最小侵入性方法之间的关联被证明是有效的,这表明使用合并疗法在两个月内以显着的临床改善治疗椎间盘突出,而没有手术风险和医院费用。IPRF,超螺旋激光和脉冲磁疗之间的协同作用促进了细胞的恢复和炎症调节。