自量子光学诞生之初,人们就知道光学状态的非经典特性(如压缩、反聚束和纠缠)易受衰减影响 [1]。通过衰减器(有损通道)传播时,光学状态的量子特征与环境共享,并在追踪环境时丢失。因此,人们长期以来一直努力减少制备和操纵这些状态时的损失,以增强其在量子信息处理 [2]、量子计量 [3] 和其他应用中的实用性。在本文中,我们挑战了这一范式,展示了一类非经典纠缠光态,它们不仅可以在衰减介质中传播而不受损失的影响,而且是由于这些损失而产生的。也就是说,任何其他状态进入并传播通过该介质后,都会转换为该家族中的状态。我们将这些状态称为光学暗态( OD ),类似于原子的暗态,原子的暗态虽然与原子跃迁共振,但不吸收光。与原子暗态类似, OD 态出现在 Λ 形原子系统中。两个基态通过两对场以类似拉曼的方式相互耦合。在每对场中,一个场是量子,另一个场是强激光(图 1 ( a ))。通过这种方式,量子场直接与原子基态相互作用:模式 ˆ a 下光子的吸收会将光子从能级 ∣ ñ 1 转移到能级 ∣ ñ 2 ,而模式 ˆ b 具有相反的效果。当两种模式都充满光子时,这些过程会叠加发生。此外,如果这些模式的状态是具有特定压缩参数(由光学模式和物质之间的有效耦合常数之比决定)的双模压缩真空(TMSV),则这两个过程会发生干涉相消,从而有效地阻止原子态和光学态的相互作用。然后,即使基态相干性衰减,该 OD 态也会在这种原子的气体中传播而不会发生任何损失或演变。这里研究的现象的物理与 [ 4 , 5 ] 的物理密切相关,其中两个宏观原子集合的纠缠是由耗散现象驱动的。事实上,正如我们在下面展示的,它们是产生光和原子纠缠态的相同的过程。