3 天前 — 主题、规格或标准单位数量执行截止日期|履行地点。06-1-2373-8200-0012-00 ... (4) 防卫省卫生督察、大臣官房、防卫政策局局长、防卫装备局局长(以下简称“有权暂停部长提名的人”)...
[概述]生命科学研究和阐明疾病机制需要高的时间分辨率,这允许观察蛋白质和其他物质在毫秒中的精细运动。现有的蛋白质标签具有有限的光稳定性和亮度,使这些观察结果变得困难。 该研究团队由Tohoku大学跨学科科学领域研究所的Niwa Shinsuke领导,Kita Tomoki的一名研究生开发了一个名为“ FTOB(Fluorescent-LabeLed Tiny DNA折纸)的新荧光标签”,使用DNA与DNA进行了DNA,并与Associent in University a Engine atiforing Mie Suie Mie Yuki合作。与常规标签相比,该FTOB不太可能引起光漂白或眨眼,并且通过极高的时间分辨率,可以观察到蛋白质的运动至少几十分钟。此外,FTOB被设计为使用称为“ DNA折纸”的技术自由重组,就像块一样,可以广泛应用于研究生命现象,例如细胞分裂和与各种疾病(例如阿尔茨海默氏病和癌症)相关的蛋白质。 该结果于2025年2月11日在线发表在“学术杂志”细胞报告物理科学报告中。
提出并演示了一种通过微透镜阵列 (MLA) 的光场投影进行 3D 光刻的方法。利用 MLA,我们可以通过开发的聚焦方案将来自空间光调制器 (SLM) 的光传送到 3D 空间中的任意位置,即体素。体素位置和 SLM 像素位置之间的映射函数可以通过光线追踪一一确定。基于正确的映射函数,可以通过 SLM 和 MLA 在 3D 空间中重建计算机设计的 3D 虚拟物体。然后可以对投影的 3D 虚拟物体进行光学压缩并将其传送到光刻胶层进行 3D 光刻。利用适当的近紫外光,可以在光刻胶层内的不同深度构建 3D 微结构。这种 3D 光刻方法可用于在任意位置进行高速 3D 图案化。我们预计,在提出的光场 3D 投影/光刻方案中采用飞秒光源和相关的多光子固化工艺时,也可以实现高精度 3D 图案化。多光子聚合可以防止在到达设计的焦点体素之前沿光路对区域进行非自愿图案化,如我们在单光子演示中所观察到的那样。
1)随着分布式光伏统筹上网电价逐年下降以及储能系统成本降低,建设分布式+储能系统实现 分布式电源全部就地消纳具有较好的经济效益,同时利用储能系统每天“两充两放”的特性, 合理利用阶梯电价,提高系统效益。With the distributed PV grid prices and the energy storage system cost decreasing every year, there is good economic benefit to build the distributed + energy storage system to achieve all the local power consumption, and because the energy storage system charges and discharges twice every day, the step tariff , if well employed, can increase the system benefit. 2)通过能量管理系统控制分布式电源+储能系统平滑输出,减小外部气象条件对分布式电源输 出的影响,提高供电电能质量。Achieving smooth output from the distributed power supply + energy storage system by the energy management system, reducing the impact to the distributed power output from the external weather conditions and improving the quality of power supply. 3)通过分布式电源+储能系统组成并网型微电网系统,当电网故障时,自动切换至独立运行模 式,保持重要负荷连续供电/或者利用储能系统代替企业原有设计起到后备电源(UPS)的作 用。When the grid breaks down, the microgrid system that is composed of the distributed power supply + energy storage system automatically switches to stand-alone mode, which maintains continuous power supply or uses energy storage system to replace the UPS in the original design.
摘要:对于胶体纳米量结构,转移电子显微镜(TEM)网格已被广泛用作暗场显微镜的底物,因为纳米尺度的特征可以通过在暗场显微镜研究后通过TEM成像有效地确定。但是,在常规TEM网格中实现了光学上有损的碳层。从TEM网格边缘的宽带散射进一步限制了可访问的信噪比。在这里,我们认为自由悬浮,超薄和广泛的透明纳米膜可以应对此类挑战。我们开发了1 mm x600μm的比例和20 nm厚的聚(乙烯基形式)纳米膜,其面积比传统的TEM网格宽约180倍,因此有效排除了网格边缘的可能的宽带散射。另外,可以在没有碳支持的情况下形成这种纳米膜;使我们能够达到其他基材中散射的最高信噪比。关键字:暗场光谱,纳米光学,等离子体,MIE散射,纳米粒子
材料Sio 2。在拓扑模式下,电场高度局部位于分层结构的反转中心(也称为界面),并成倍地衰减到批量上。因此,当从战略上引入非线性介电常数时,出现了非线性现象,例如Biscable状态。有限元数值模拟表明,当层周期为5时,最佳双态状态出现,阈值左右左右。受益于拓扑特征,当将随机扰动引入层厚度和折射率时,这种双重状态仍然存在。最后,我们将双态状态应用于光子神经网络。双态函数在各种学习任务中显示出类似于经典激活函数relu和Sigmoid的预测精度。这些结果提供了一种新的方法,可以将拓扑分层结构从拓扑分层结构中插入光子神经网络中。
摘要 激光定向能量沉积(L-DED)作为一种同轴送粉金属增材制造工艺,具有沉积速率高、可制造大型部件等优点,在航空航天、交通运输等领域有着广泛的应用前景。然而,L-DED在金属零件尺寸和形状的分辨方面存在工艺缺陷,如尺寸偏差大、表面不平整等,需要高效、准确的数值模型来预测熔覆轨道的形状和尺寸。本文提出了一种考虑粉末、激光束和熔池相互作用的高保真多物理场数值模型。该模型中,将激光束模拟为高斯表面热源,采用拉格朗日粒子模型模拟粉末与激光束的相互作用,然后将拉格朗日粒子模型与有限体积法和流体体积相结合,模拟粉末与熔池的相互作用以及相应的熔化和凝固过程。
Pustimbara博士于2019年开始研究5-氨基甲酸(ALA),同时继续在日本进行研究。 ALA是一种天然存在的氨基酸,通常在体内产生,但也可以在补充剂和治疗中外源使用。目前,它通常用于用于医疗目的的癌症的光动力诊断,但ALA具有在其他疾病的药物治疗中的巨大潜力。 Pustimbara博士开始了他的研究,该研究对在干细胞培养物中使用ALA的试验进行了一种称为线粒体脑病,乳酸性酸中毒和中风样发作(称为Melas综合征)的罕见疾病。迄今为止,尚无对疾病产生重大影响的治疗方法,Pustimbara博士发现,使用IPS细胞系并将ALA和SFC一起使用可以改善与线粒体功能相关的蛋白质的表达。此外,我们对脂肪细胞祖细胞的分化过程进行了研究,发现使用ALA和SFC大大减少了在3T3-L1分化过程结束时产生的脂肪细胞量。 Pustimbara博士在他的博士研究中使用了ALA和Hemin在癌细胞中使用的不同组合。 Hemin是一种含有氯的含铁的卟啉,由血液中常见的血红素组形成。使用胃癌细胞的研究表明,ALA和HEMIN可以通过增加细胞内PPIX积累和活性氧的产生来降低癌细胞的存活高达18%(Pustimbara等,2024)。除了第一个发现这一点的研究外,我们发现ALA和HEMIN的结合可能是在癌症疾病中使用光动力疗法的另一种选择。
1索邦大学,PSL Observiire de PARS,Center National de la Recherche Scientifica,Lerma,F-75005 Paris,Paris,Paris,Paris 2 InstitutodeFísica,联邦政府Do Rio de Janeiro,Rio de Janeiro,Rio de Janeiro,Rio de Janeiro,Rio de JaneiroB. Pontecorvo 3, 56127 Pisa, Italy 4 Ino-Cnr, via G. Moruzzi 1, 56124 Pisa, Italy 5 Majulab, International Research Laboratory IRL 3654, University Côte d'Azur, Sorbonne University, National University of Singapore, Nanyang Technological University, Singapore 6 Center for Quantum Technologies, National University of Singapore, 117543新加坡,新加坡7人与数学科学学院,南南技术大学,新加坡637371,新加坡8诺诺西比尔斯州立大学,UL。Pirogova 2,630090 Novosibirsk,俄罗斯9激光学院,西伯利亚分公司,俄罗斯科学院,俄罗斯。akad。Lavrent'eva 15B,630090 Novosibirsk,俄罗斯10 Novosibirsk State Insecors,Prosp。Karla Marksa 20,630073 Novosibirsk,俄罗斯