摘要 X/γ 射线在实验室天体物理和粒子物理中有许多潜在的应用。尽管已经提出了几种方法来产生具有角动量(AM)的电子、正电子和 X/γ 光子束,但产生超强明亮的 γ 射线仍然具有挑战性。本文提出了一种全光学方案来产生具有大光束角动量(BAM)、小发散度和高亮度的高能 γ 光子束。在第一阶段,强度为 10 22 W/cm 2 的圆偏振激光脉冲照射微通道靶,从通道壁拖出电子,并通过纵向电场将其加速到高能量。在此过程中,激光将其自旋角动量(SAM)转换为电子的轨道角动量(OAM)。在第二阶段,驱动脉冲被附着的扇形箔反射,从而形成涡旋激光脉冲。在第三阶段,高能电子与反射的涡旋脉冲正面碰撞,并通过非线性康普顿散射将其 AM 转移到 γ 光子。三维粒子模拟表明,γ 射线束的峰值亮度约为 10 22
本研究探讨了辐射束能量水平和角度对癌症治疗期间对邻近健康组织和肿瘤的剂量的影响。由于电子束由于其浅渗透深度而最适合浅表肿瘤,但线性加速器产生的光子束对于深座的肿瘤有用。辐射剂量在0°和60°的不同角度以不同的角度和15 mV光子束进行测量,并在0°和15°处使用6 MeV,12 MeV和15 MeV电子束。研究结果表明,在光子治疗中,较大的角度和较高的能量在不同位置产生较高的剂量。电子治疗中的能量水平对剂量分布的影响比角度更大。我们的线性回归模型分析发现,光子治疗中的能级角度和剂量测量与高R 2分数密切相关(高于0.8)。与电子疗法观察到了实质性和不一致的相关性。尽管有这些变化,但两种治疗方法的各种剂量测量之间仍存在正相关。这些结果强调了选择直角和能量水平以最大化治疗功效并最大程度地减少对健康组织的伤害的重要性。通过将我们的结果与确保安全性和有效性的国际标准进行比较,支持在临床环境中使用这些治疗方案。
7.X射线束的能量(d max和百分比深度剂量)。..................1105 8.准直器透射。..............1105 9.电子束的能量(百分比深度电离)。.......。。。。。。。。。。。。。。。。。。。。1105 10.X 射线污染。。...............1105 11.使用光子的旋转和弧形治疗 1105 a.每单位角度的剂量。.................1105 b. 电弧终止。...................1105 12.光束修改装置。...........。1105 a.楔子。。。。。。。。。。。。。。。。。。。。。。......1105 b. 颌骨不对称。.。。。。。。。。。。。。。。。。。1106 c。动颚楔块。。。。。。。。。。。。。。。。1106 d.光束制动器。。。。。。。。。。。。。。。。。。。。。。1106 13.等剂量(等电离)曲线。。。。。。。。。。1106 14.表面剂量。。。。。。。。。。。。。。。。。。。。。。。。1106 G. 检查联锁系统。。。。。。。。。。。。。。。。。1106 H. 多叶准直器。。。。。。。。。。。。。。。。。。。。。。1106 一.检查辅助设备。。。。。。。。。。。。。。1107 J.验收测试摘要。。。。。。。。。。。。。1107 IV 调试。。。。。。。。。。。..............1107 A. 放射治疗加速器调试概述 .............................1107 B. 剂量校准。.....................1108 C. 调试光子束。....。。。。。。。。。。1108
摘要:本文回顾了目前在外层空间部署的技术以及正在开发和批量生产的技术属性。本文以严谨的科学证据驳斥了中国国家控制的新华社几年前反对美国在外层空间部署核技术的宣传。此外,本文警告了应用于外层空间技术的物理信号的危险,这些信号可能威胁太阳系,尤其是使用光子束的墨子量子卫星。本文最后指出了中国在所谓的科学机构中怀有好战野心的非法行为。它违反了和平利用外层空间的精神,违背了大会通过的第 2222 (XXI) 号决议,包括禁止在外层空间部署大规模杀伤性武器的 1967 年《外层空间条约》。关键词:技术伦理;外层空间的和平发展;人类安全风险;科学证据;方法论;物理信号;热核天体化学;刑事判决。
温度对剂量测量的影响是固态剂量计的主要限制因素。对于 PIN 光电二极管剂量计尤其如此,因为其暗电流与温度呈指数相关。为了尽量减少这种影响,提出了一种补偿方法,该方法依赖于二极管结构本身,而无需外部传感器或设备。在辐照期间,光电二极管定期从反向极化切换到正向极化,以确定设备的温度。该测量基于二极管在恒定电流下工作时温度与正向电压之间的线性依赖关系。开发了一种实现此程序的电子电路,用于实验表征 BPW34S Si PIN 光电二极管对辐射的响应。所提出的程序将热漂移引起的不确定性降低了 7.5 倍。此外,测量的平均剂量率灵敏度为 12 ± 2 nC/cGy,在 6 MV 光子束下进行的 21.4 Gy 辐照周期中灵敏度下降低于 2%。我们已经证明,pn结可以成功地用于补偿温度对剂量测量的影响。
摘要X/γ-砂在实验室天体物理学和粒子物理学中具有许多潜在的应用。已经提出了几种具有角动量(AM)的电子,正电子和X/γ-光子束的方法,但超强度的亮γ射线的产生仍然具有挑战性。在这里,我们提出了一个全光方案,以产生具有大型束角动量(BAM),小差异和高光彩的高能量γ-光束。在第一个阶段,强度为10 22 W/cm 2的圆形极化激光脉冲辐射一个微通道目标,从通道壁上拖出电子,并通过纵向电力场将它们加速到高能。在此过程中,激光将其自旋角动量(SAM)转移到电子轨道角动量(OAM)。在第二阶段,驱动脉冲通过附着的风扇翼反映,因此形成了涡流激光脉冲。在第三阶段,能量电子与反射的涡流脉冲正面碰撞,并通过非线性康普顿散射将其AM传递到γ-播种。三维粒子中的模拟表明,γ射线束的峰值光彩为〜10 22
摘要:由于各个单元之间的相互作用,可以从有序的发射器集合中出现集体光学性质。卤化物钙钛矿纳米晶体的超晶格表现出集体光发射,受偶极子 - 同时激发的纳米晶体之间的偶极子相互作用。与未偶联的纳米晶体的发射相比,这种耦合改变了发射能和速率。我们证明了量子限制如何控制合奏中纳米晶体之间耦合的性质。通过控制纳米晶体的大小或对BOHR半径的组成控制来改变限制的程度。在由弱受限制的纳米晶体制成的超晶格中,集体发射以更快的发射速率进行红移,显示了超荧光的关键特征。相比之下,更强的量子限制纳米晶体的集体发射以较慢的发射速率进行蓝色。两种类型的集体发射都表现出相关的多光子发射爆发,显示出不同的光子束发射统计。量子限制改变了纳米晶体内过渡偶极子的首选比对,并切换邻居之间的相对偶极子方向,从而产生了相反的集体光学行为。我们的结果将这些集体效应扩展到相对较高的温度,并更好地了解固态处的激子相互作用和集体排放现象。关键字:纳米晶体,铅卤化物钙钛矿,超晶格,纳米晶体耦合,超荧光,量子限制T
*通讯作者:ysubaar@gmail.com摘要放射疗法的准确性和一致性对于癌症治疗至关重要。然而,诸如机器故障之类的技术问题会损害辐射输送,从而导致剂量分布,冷点或冷点,以及包括局部肿瘤复发在内的次优治疗结果。本研究评估了Komfo Anokye教学医院的Varian Clinac IX线性加速器的光子束参数,以确保机器的临床可靠性。梁曲线的6 mV和16 mV光子能量。在不同的深度进行10×10cm²和15×15cm²的场尺寸进行测量。对于10×10cm²的场尺寸,6 mV光子能的梁平整度和对称性分别为0.88%至2.22%和0.25%至0.25%至0.78%,分别为15×15cm²的场尺寸,分别为1.39%至2.39%至2.34%至2.34%至0.57%至0.57%至0.96%。16 mV光子能量的平坦度和对称性范围从1.98%到2.42%至2.42%和0.36%至1.04%的场尺寸,从15×15cm²的场地尺寸为1.25%至2.25%至2.55%至0.25%至0.25%至0.25%至0.67%。6 mV光子的测得的电荷为16.59 NC,而16 mV光子能量为19.28 NC。调查结果表明,线性加速器在临床使用方面处于良好状态。但是,建议进行定期的质量控制检查以保持其性能并确保一致,准确的癌症治疗。
电子束治疗的应用:主要应用是(a)皮肤和唇部癌的治疗,(b)乳腺癌的胸壁照射,(c)给节点的增强剂量,以及(d)头和颈部癌的治疗。尽管这些位点中的许多可以用浅表X射线,近距离放射治疗或切向光子束处理,但电子束照射在目标体积的剂量均匀性方面具有明显的优势,并最大程度地减少了对更深的组织的剂量。电子相互作用当电子通过介质传播时,它们通过库仑力相互作用而与原子相互作用。这些过程是(a)与原子电子(电离和激发),(b)与核(bremsstrahlung)的无弹性碰撞,(c)与原子电子的弹性碰撞,以及(d)与核里的弹性碰撞。在非弹性碰撞中,某些动能丢失,因为它用于产生电离或转化为其他形式的能量,例如光子能量和激发能。在弹性碰撞中,尽管可以在碰撞中出现的颗粒中重新分布动能,但不会损失动能。在低原子数培养基(例如水或组织)中,电子主要通过用原子电子电离事件失去能量。在较高的原子数材料(例如铅)中,Bremsstrahlung的生产更为重要。在与原子电子的碰撞过程中,如果被剥离的电子获得的动能足够大,以引起进一步的电离,则电子被称为二次电子或A(delta)-Ray。作为电子束在介质中行驶,能量会不断降解,直到电子达到热能并被周围原子捕获。
X 射线自由电子激光器 (XFEL) 的光子束比第三代光源亮 10 个数量级,是科学应用中最亮的 X 射线源 1 – 4 。其独特的波长可调性、飞秒脉冲持续时间和出色的横向相干性被用于多个科学研究领域,包括原子、分子和光学物理、化学、生物、凝聚态物理和极端条件下的物质 5 。X 射线脉冲定制一直是一个非常活跃的研究领域,包括新型超短高功率模式 6、7,极化控制 8 – 10 和双色双脉冲 11 – 18 。双 X 射线脉冲被开发用于进行 X 射线泵/X 射线探测实验,其中由一个 X 射线脉冲引发的超快物理和化学动力学可以通过第二个超短 X 射线探测脉冲来探索。这种脉冲通常是用分裂波荡器11、16或双束流技术15产生的。在双束流模式下,脉冲之间的时间间隔限制在125 fs以内,而使用新鲜切片方案16通常会产生最大延迟约为1皮秒的双脉冲。然而,有些实验需要更长的时间间隔。例如,可以通过用第一个X射线脉冲触发取决于压力的过程,然后在几纳秒后用第二个X射线脉冲探测它们,来研究水滴的爆炸19。可以用延迟超过120纳秒的第二个脉冲来探测X射线在气体装置中引起的丝状效应20。在X射线探针/X射线探针类实验中,两个脉冲都不是用来驱动样品进入不同状态的,但两个X射线脉冲在散射后可以进行有效比较,并用于在明确定义的时间间隔内提取信息。例如,从记录的散斑图案研究了磁性 skyrmion 的平衡波动,这些散斑图案是纳秒范围内两个衰减 x 射线脉冲之间的时间延迟的函数 21 – 25。最近,随着 LCLS 基于 x 射线腔的系统的出现,双脉冲和多脉冲模式传输变得至关重要 26、27。基于腔的 XFEL(CBXFEL)项目目前依赖于 220 ns 双脉冲模式,而 x 射线激光振荡器 (XLO) 28 将使用最多 8 个脉冲串,间隔为 35 ns。许多极端条件下的物质 (MEC) 实验也需要最多 8 个 x 射线脉冲,间隔 ≤ 1 ns,现在可以传输 29 – 31。在本文中,我们完整描述了一种新型双桶方案,该方案在 LCLS-I 和 LCLS-II 波荡器上使用铜直线加速器 32 – 34 运行。我们使用在不同射频 (RF) 桶中加速的两个电子束将 x 射线脉冲延迟范围扩展到 1 ps 以上。使用现有的 S 波段加速结构,工作频率为 2.856 GHz,可用的最小时间延迟为 ∼ 350 ps,对应于单个桶分离。延迟可以按整数桶数进行控制,也可以按 350 ps 的步长控制,最高可达数百纳秒。基于超导加速器技术的现有和计划中的高重复率 FEL 机器将产生重复率为 MHz 量级的光子束串,因此 XFEL 脉冲之间的最小距离比使用所提出的方案可实现的距离长得多。FERMI 展示了一种类似的技术,可以产生最大分离为 ∼ 2.5 ns 的双电子束。然而,激光过程仅限于极紫外波长。