•探索LTS磁铁的性能限制,重点是强大的大规模实现•探索超出NB 3 SN限制的HTS磁铁技术,用于加速器应用•开发下一代的加速器磁铁,用于未来的colliders
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
背景和目的:心脏计算机断层扫描(CT)对假体心脏瓣膜(PHV)综合的检测和表征的贡献仍然受到限制。配备有光子计数检测器(PCD)的计算机断层扫描系统有可能克服这些局限性。因此,该研究的目的是将PHV的图像质量与PCD-CT和双能双层CT(DEDL-CT)进行比较。材料和方法:将两个金属和3个生物PHV放置在一个管子内,该管子内含有稀释的碘对比度,并在DEDL-CT和PCD-CT上以不同的角度反复扫描。两个小病变(厚度约2毫米;分别包含肌肉和脂肪)连接到4个阀的结构上,放置在胸腔幻影内,有和没有一个张力环,然后再次扫描。的采集参数是2个CT系统匹配的,并用于所有扫描。金属阀再次用适合钨k边缘成像的pa-Rameters扫描。对于所有阀门,在常规图像上测量了不同的金属零件,以评估其厚度和开花伪影。此外,还绘制了每个金属阀的6个平行剥离,并且所有密度<3倍对比介质的标准偏差的体体均被记录为条纹伪影的估计值。为主观分析,3位专家读者评估了阀门的常规图像,有和没有病变,以及钨K边缘图像。的阀门不同部分的显着性和清晰度,病变,金属和盛开的伪影的量表以4分制评分。将测量和分数与配对t检验或Wilcoxon检验进行比较。结果:客观分析表明,使用PCD-CT,瓣膜金属结构较薄,并且呈鲜花化的伪影。金属伪影也用PCD-CT(11 [四分位数(IQ)= 6] vs 40 [IQ = 13]%的体素量减少。主观分析允许注意到某些结构是可见的
CT 扫描仪是诊断和监测各种健康状况以及介入和研究用途的成熟工具。1 CT 扫描仪为医疗保健从业者提供人体的详细横截面视图。自 20 世纪 70 年代开发以来,CT 扫描仪经历了众多技术进步,包括提高图像分辨率、加快扫描时间以及创建非造影图像的能力。1-3 CADTH 的加拿大医学影像清单记录了加拿大各地先进影像设备(包括 CT)的供应、分销、技术操作以及一般临床和研究使用的当前实践和发展。4 根据目前可用的数据,CT 扫描仪是加拿大最常见的影像方式:加拿大有 544 个 CT 单位,分布不均。4 在过去十年中,进行的 CT 扫描量增加了 47.7%(2022-2023 年约为 650 万次,而 2012 年为 440 万次),每 1,000 人进行的 CT 检查增加了 28.9%(2022-2023 年为 162.0 次,而 2012 年为 125.7 次)。4 我们还意识到加拿大的成像设备正在老化:2022-2023 年的一项调查发现,三分之一的 CT 设备至少有 10 年的历史。这表明需要在未来 5 年内更换许多 CT 设备;加拿大放射学会建议任何成像设备的最大预期寿命和临床相关性不超过 15 年。4 尽管 CT 技术取得了进步,但传统 CT 扫描仪仍存在局限性,包括图像伪影,这可能会限制植入医疗设备的人的诊断准确性(金属物体会吸收或散射 X 射线,导致扫描结果出现阴影或条纹)。3
1 INFN—弗拉斯卡蒂国家实验室,00044 弗拉斯卡蒂,意大利; matteo.beretta@lnf.infn.it (MB); fabio.chiarello@ifn.cnr.it(FC); apiedjou@lnf.infn.it (ASPK); carlo.ligi@lnf.infn.it (CL); giovanni.maccarrone@lnf.infn.it(GM); luca.piersanti@lnf.infn.it (LP); alessio.rettaroli@lnf.infn.it (AR); simone.tocci@lnf.infn.it (ST); claudio.gatti@lnf.infn.it (CG)2 量子研究中心,技术创新研究所,阿布扎比邮政信箱 9639,阿拉伯联合酋长国; boulos.alfakes@tii.ae (英国航空); anas.alkhazaleh@tii.ae (AA); stefano.carrazza@cern.ch (SC); andrea.pasquale@unimi.it(美联社) florent.ravaux@tii.ea (FR) 3 佛罗伦萨大学物理与天文系,意大利塞斯托菲奥伦蒂诺 50019; leonardo.banchi@unifi.it 4 INFN—佛罗伦萨分部,50019 Sesto Fiorentino,意大利 5 米兰大学物理系 TIF 实验室,20133 米兰,意大利; matteo.robbiati@cern.ch 6 INFN 米兰分部,Via Giovanni Celoria 16, 20133 米兰,意大利 7 CERN,理论物理部,CH-1211 日内瓦,瑞士 8 CNR 光子学和纳米技术研究所,00156 罗马,意大利 9 米兰比可卡大学物理系,20126 米兰,意大利; andrea.giachero@mib.infn.it (AG); emanuele.palumbo@lnf.infn.it (EP) 10 INFN Milano Bicocca Section, Piazza della Scienza 3, 20126 Milano, 意大利 11 Bicocca Quantum Technologies (BiQuTe) Centre, 20126 Milano, 意大利 12 海德堡大学物理与天文系, 69120 Heidelberg, 德国; felix.henrich@stud.uni-heidelberg.de 13 比萨大学信息工程系,Via G. Caruso 16,56122 比萨,意大利; massimo@mercurio.iet.unipi.it * 通信地址:alessandro.delia@lnf.infn.it
1 INFN-国民弗拉斯卡特劳动,00044弗拉什,意大利; sweeping.infn.infn.infn(M.B.); fabio.chiryland@ifn.it(f.c。);应用程序@lnph.infn.infn.it(A.S.P.K.); carlo.infn.infn.infn.it(c.l.); playon.marfn@lnfn.infn.it(g.m。); light.infn.infn.infn(l.p.); supresiumsups.infn.infn.infn(A.R.); symones.infn.infn.infn(s.t.); classy.gate@lnfn.infn.infn(c.g.)2个量子,技术行业,阿布扎比P.O.BOOX 9639,UNITD EMIRATES; boulos.alphakes@tii.ae(B.A.); dulls.alkhazaleih@tii.ae(a.a.); Singer.car.crun.c(S.C.); dried.passquare@unimi.it(A.P.); florent.ravaux@tii.ea(f.r。)3个身体和天文学,企业大学,意大利50019 Shift; leonardo.bank@unifi.it 4 INFN - 赛车区,50019 Shift,Italy 5 TIF,米兰大学研究系物理系,20133年,意大利米拉诺; skull.robeat@can 6 6米兰诺的INFN部门,通过约翰福音16号,20133年,米兰,意大利7,理论物理部,CH-1211遗传学学家,瑞士学家,Switzerists 8 Italy 9 Italy 9 Italy Switzerolokist 9,意大利9号米兰诺(Milano-bycoccas)物理学系,20126年米兰诺,20166年意大利,意大利米兰; swallow.gyfn.infn.in Infundund(A.G.); emanuele.palumbo@lnfn.in.in.it(e.p。)米兰比科卡(Milan Bicocca)的10个INFN部分,Piazza della scienza 3,20126米兰,意大利米兰11 Bicocca量子技术(Bioste)中心,20126年米兰,意大利米兰,意大利物理和天文学系,海德尔伯格大学,69120 Heidelberg,德国海德尔伯格; felix.henrich@stud.uni-heidelberg.de 13 PISA大学信息工程系,通过G. Caruso 16,56122 Pisa,意大利Pisa; massimo@mercurio.iet.unipi.it *通信:Alessandro.delia@lnf.infn.it
1 INFN - 弗拉斯卡蒂国家实验室,00044 弗拉斯卡蒂,罗马,意大利; 2 量子研究中心,技术创新研究所,邮政信箱 9639,阿布扎比,阿拉伯联合酋长国; 3 佛罗伦萨大学物理与天文系 4 INFN 佛罗伦萨分部,I-50019,塞斯托菲奥伦蒂诺,意大利佛罗伦萨 5 米兰大学物理系 TIF 实验室,意大利米兰; 6 INFN 米兰分会,意大利米兰; 7 欧洲核子研究中心,理论物理部,瑞士日内瓦 23 CH-1211; 8 光子学和纳米技术研究所 CNR,00156 罗马,意大利; 9 米兰比可卡大学物理系,I-20126 米兰,意大利 10 INFN Sezione di Milano Bicocca,I-20126 米兰,意大利 11 Bicocca Quantum Technologies (BiQuTe)Centre,I-20126 米兰,意大利 12 海德堡大学物理与天文系,69120 海德堡,德国 13 比萨大学信息工程系,Via G. Caruso 16,56122 比萨,意大利 * 通信地址:alessandro.delia@lnf.infn.it;
首先引入时,单光子计数检测器在同步基因上重塑晶体学。他们的快速读数速度启用了,例如,旋转角度的无快速数据收集和切片,并增强了新实验技术(如Ptychography)的开发。在最佳条件下,单光子计数检测器提供无限的动态范围,图像噪声仅受传入光子的泊松统计限制。从单个光子中计算脉冲,从本质上讲是使探测器如此成功的原因,也会引起主要缺点,这是由于模拟前端脉冲堆积而导致的高光子弹药效率的丧失。要充分利用衍射限制的光源,下一代单光子计数器需要以与增加的伏特量相同的数量级来提高其计数率能力。此外,由于较高的频道,需要快速帧速率(几个kHz)才能应对较短的停留时间。带有多个比较器和计数器的检测器架构可以为能量分辨成像打开新的可能性,而像素间交流可以克服收费共享和降低像素角效率损失引起的问题。将单光子计数检测器耦合到高Z传感器,以进行硬X射线检测(> 20 keV)和低增益的雪崩二极管(LGADS)以进行软X射线,以利用全部辐射光谱的新光源的增加。在本文中,我们提出了提高第四代同步源的单光子计数检测器性能的可能策略,并将它们比较它们以对集成检测器充电。
摘要:基于斑点的成像(SBI)是一种先进的X射线成像技术,除了吸收信号外,还测量相位和暗场信号。SBI使用随机波前调节器生成斑点,需要两个图像:一个单独具有斑点模式,另一个具有样品和斑点。SBI重建算法通过比较这两个图像来检索三个信号(传输,折射和暗场)。在SBI中,斑点可见性在检索三个信号中起着至关重要的作用。将技术从同步加速器源转化为紧凑的实验室设置时,源源的连贯性和可用分辨率中的局限性降低会产生较低的斑点可见性,从而阻碍了相位和暗场信号的检索。在这种情况下,直接检测CDTE X射线光子计数检测器(XPCD)提供了一个有吸引力的解决方案,因为它们允许高检测效率和最佳的空间分辨率增强斑点可见性。在这项工作中,我们介绍了新建立的最佳成像(最佳成像和断层扫描)实验室,用于托管在Elettra Synchrotron(意大利Trieste)的X射线成像。SBI的设置具有高达15 µm的分辨率,包括XPCD和电荷整合平面面板检测器(FPD)来获取SBI数据。总结了将SBI应用程序从同步器设施转移到紧凑的实验室设置时的主要限制因素。通过比较使用两个检测器获得的SBI图像来讨论XPCD比FPD的优点。简要介绍了通过使用XPCD的多阈值获取的光谱分解方法的潜力。本工作中显示的结果代表了实现多模式和多分辨率X射线设施的第一步。
在量子状图林基中开发的Spad evalkit基于单个光子计数的时角的过程,并以20 picose第二的时间分辨率启用测量。这允许研究基于量子的应用程序,以及用于视野内诊断的新解决方案或医疗技术。照片:Imms。