-召集人:Pathey, Luc(PSI - Paul Scherrer 研究所); Sikora, Marcin(SOLARIS 国家同步辐射中心,雅盖隆大学,Czerwone Maki 98, 30-392 Krakow, 波兰); Kordyuk, Alexander(基辅学术大学)
单光子光检测和范围(LIDAR)系统通常配备一系列检测器,以提高空间分辨率和传感速度。但是,考虑到激光跨场横跨场景产生的固定量磁通量,当更多像素在单位空间中堆积时,每像素信号到噪声(SNR)将减小。这在传感器阵列的空间分辨率与每个像素的SNR之间的空间分辨率之间提出了基本的权衡。探索了这种基本限制的理论表征。通过得出光子竞争统计量并引入一系列新的近似技术,得出了时间延迟的最大样品估计器的平均平方误差(MSE)。理论预测与模拟和实际数据良好。
摘要输入物联网(IoT)和第五代(5G)移动网络的时代,对紧凑,成本效益和高音传感器和执行器的需求飙升。光学技术作为对常规电气技术的补充,为构造广泛应用的传感器和执行器提供了一种多功能平台,显示了高数据速率,强大的多重能力,快速响应,低串扰,低串扰以及对电磁干扰的免疫力的优势。在本文中,我们对光学传感和驱动技术的开发过程进行了全面综述。在光学检测器,光传感器(进一步分为物理和化学/生物传感器)中的应用以及光学通信/计算/成像。对于每个应用程序的每个类别,都遵循从光学微电体式系统(MEMS)和纳米光子学到光子纳米系统的技术演变趋势引入进度。还提出了光学传感/致动技术的未来开发方向。
在半导体和高级材料行业中需要使用非接触式和非毁灭性工具,以表征散装,薄膜和2D材料的电气性能。
我们提出了一种基于微型,能量,低成本的单光子凸轮的测量值来重建任意兰伯特对象的3D形状的方法。这些摄像机作为时间解析的图像传感器运行,用非常快速的脉冲脉冲融合了光,并记录了该脉冲的形状,因为它以高时间分辨率从场景中返回。我们提出了模拟此图像形成过程的建模,解释其非理想性,并适应神经渲染以从一组具有已知姿势的空间分布的传感器中重建3D几何形状。我们表明,我们的方法可以从模拟数据中成功恢复复杂的3D形状。我们利用商品代理传感器的测量结果来证明实际捕获的3D对象重建。我们的工作在基于图像的建模和活动范围扫描之间建立了连接,并通过单光子摄像机朝着3D视觉提供了一步。我们的项目网页位于https://cpsiff.github.io/ toug_3d_vision/。
在外部束放射治疗期间,患者暴露于次级辐射源,导致具有潜在的长期不良影响的非领域剂量。了解光子和电子能谱对于评估现代放射疗法的次要效应至关重要。这项研究旨在评估几个小放射治疗场的光子和电子功能光谱和平均能量以及范围边缘的平均能量。该研究使用了三个常用的线性加速器生成的6 mV光子光束,使用了国际原子能局(IAEA)相空间文件来产生小型和标准场。在三个线性加速器和预先固定的6 mV光谱的多个深度和轴距离处计算平均光子和电子能。研究发现,光子功能光谱在很大程度上取决于空间位置,并且随着深度,距离距离,范围距离,范围大小和Linac模型的函数的显着变化。此外,电子的行为是深度依赖性的,在该领域的边缘之外,在该领域,表面附近的平均电子能量大于内部区域,尤其是在小型领域,导致表面剂量增强。
摘要,由于基于化石的材料引起的环境问题,从生物基础资源中开发了可持续材料。木质素是一种化学复杂的生物聚合物,存在于血管植物的木质组织中。木质素具有许多有用的特性,例如抗氧化活性,热稳定性,紫外线吸收性,刚度等。然而,木质素的固有挑战与其复杂的分子结构以及在水和常见溶剂中的溶解度差有关。一种利用木质素的一种策略是制造木质素纳米颗粒(LNP),以在水中产生胶体稳定的分散体。本论文旨在开发基于LNP的材料,这些材料可用于光子晶体和光热膜用于节能功能材料。论文的第一部分重点是阐明在LNP-Photonic Crystal(L-PC)的离心辅助组装过程中发生的现象。L-PC。在后续工作中,开发了一种改进的方法来提高L-PC的产量。研究了诸如初始木质素浓度以及稀释时间对粒径和稀释时间的影响,并研究了形成的LNP的PDI。经验模型以预测LNP的大小,并成功用于控制L-PC的颜色。此外,研究了L-PC的纳米结构。LNP-Chitosan膜和涂料并将其应用于室内热管理。将LNP含量从10到40 wt%调节。在论文的第二部分中开发了木质素吸收太阳能(光波长:250–2500 nm),基于LNP的复合膜和具有光热性能的涂层的能力。通过合并LNP,与纯壳聚糖膜相比,膜的机械强度和光热性能得到了改善。此外,通过使用LNP作为还原剂制备LNP-Silver-Chitosan(CC-AG@LNP)膜。用紫外线辅助在LNP的表面降低了银离子,并使用杂交纳米颗粒来通过铸造来制备膜。CC-AG@LNP膜表现出改善的湿势,并针对大肠杆菌表现出抗菌性能(灭菌作用> 99.9%)。总的来说,本文既有助于木质素聚集的基本见解,又有助于胶体颗粒的胶合颗粒,并展示了控制其组装并掺入具有附加功能的宏观材料中的方法。
摘要:已经进行了开放式Z扫描测量,以分别研究800 nm和1030 nm波长的三个光子(3 pa)和四光子吸收(4 PA)系数,并在一致和stoichiomempricmetricmempric niobate中(CLN,SLN,SLN),与不同的Concen-Concen-concen-concen-trations一起使用。两个波长的激光脉冲持续时间为40 fs和190 fs。晶体内部的峰强度在约110至550 GW/cm 2之间变化。使用理论模型评估了3 PA和4 PA系数,结果表明它们的最小值位于MG掺杂水平或周围,与抑制CLN和SLN的光差异相对应。此结果可以归因于晶体缺陷对3 PA和4 PA过程的贡献。此外,在1030 nm处的4 pa在相同的强度水平下在800 nm处表现出比3 pa更大的非线性吸收。讨论了这种意外行为的可能原因。总体而言,比较这些晶体的3 pa和4 pA值将使选择LN晶体的最佳组成,以进行有效的THZ产生以及其他需要高泵强度的非线性光学过程。
量子通信基于量子态的生成和量子资源在通信协议中的利用。目前,光子被认为是信息的最佳载体,因为它们能够实现长距离传输,具有抗退相干性,而且相对容易创建和检测。纠缠是量子通信和信息处理的基本资源,对量子中继器尤为重要。超纠缠是一种各方同时与两个或多个自由度 (DoF) 纠缠的状态,它提供了一种重要的额外资源,因为它可以提高数据速率并增强错误恢复能力。然而,在光子学中,处理线性元素时,信道容量(即最终吞吐量)从根本上受到限制。我们提出了一种使用超纠缠态实现更高量子通信传输速率的技术,该技术基于在单个光子上多路复用多个 DoF,传输光子,并最终在目的地使用贝尔态测量将 DoF 解复用为不同的光子。按照我们的方案,只需发送一个光子即可生成两个纠缠的量子比特对。提出的传输方案为具有更高传输速率和对可扩展量子技术的精细控制的新型量子通信协议奠定了基础。