条件:您是驻军/野战环境中的验光支队或头部或颈部团队的眼科专家。您有一位患者需要进行眼科检查,因此您需要进行眼科诊所检查前患者筛查。您将获得验光野战医疗物资或光学设备物资设备套件、检查椅(如适用)、安检通道、折射镜、眼部投影仪、患者的病历、患者当前的眼镜、制造商的说明、ATP 4-02.1 陆军医疗后勤、ATP 4-02.10 战区住院、AR 40-61 医疗后勤政策、AR 40-63 眼科服务和 SF 600 医疗护理时间记录。此任务不应在 MOPP 4 中进行训练。标准:根据(IAW)制造商的说明对患者进行眼科诊所检查前筛查,同时使用任务 GO/NO-GO 检查表以 100% 的准确度遵守所有性能步骤。特殊条件:在训练此任务时,领导者应结合使用陆军条令的八个相互关联的作战变量的情景/情况:政治;军事;经济;社会;信息;基础设施物理环境、时间 (PMESII-PT) 旨在教育士兵了解作战环境 (OE) 意识,强化价值观,并解决当前陆军问题,以改善士兵对陆军作战的理解。PMESIIPT 变量几乎在每场冲突中都会出现,并作为 OE 的基石。它们可以相互关联、重叠,并共同作为理解 OE 的基础。安全风险:低 MOPP 4:从不
物理学的目的是探索自然定律,根据这些法律理解多种自然现象,并解释和预测新现象。现代物理学,包括相对论和量子力学的理论,增加了人类对自然知识,并领导着现代科学和技术在各种领域,例如半导体电子,纳米技术,新的材料发展,与能源相关的技术,宇宙学,复杂系统和生物学。Kyung Hee的物理和应用物理学,物理系于1980年在Suwon校园的科学与工程学院成立。 在1999年,它成为电子和信息学院的物理和应用物理专业的专业,并返回独立部门,因为2009年应用物理系再次。。Kyung Hee的物理和应用物理学,物理系于1980年在Suwon校园的科学与工程学院成立。在1999年,它成为电子和信息学院的物理和应用物理专业的专业,并返回独立部门,因为2009年应用物理系再次。有希望的技术,例如纳米结构,记忆和非记忆半导体,高级/能源相关的材料以及应用光学的技术,并已建立了实践教育设施,以在本科生提供培训计划。在纳米结构和半导体领域,我们对电子和光电材料的加工,修改和表征进行研究,以及对新型电子和光电设备的设计,制造和测试。Applied Optics是所有光学电信网络越来越重要的领域,也是我们的专业研究领域之一。被选中的半导体物理研究小组被选为大脑韩国21加上由教育部支持的7年研究生院研究的授予。目前,我们有13名教职员工在纳米结构,半导体,新能量相关材料和光学设备领域进行联合理论/实验协作。
前五卷的序言和光学工程学指出:“当然,应用的光学和光学工程的许多方面都不会在这些卷中涵盖。”涵盖了其中一些“众多方面”的卷VI。此卷专门用于连贯的光学设备和系统。近年来,应用的光学和光学工程在传统领域继续显示出强度,但已扩展到包括1965年本系列第I卷第I卷的全新领域。连贯的光学科学和技术已作为应用光学和光学工程的重要分支发展。刺激是对激光作为通用光源的快速发展和开发。什么是连贯的光学工程?是那个特殊区域与相干光的独特特性的实际应用有关。相干光在空间上是高度相干,高度相干的(狭窄的光谱轮廓),高方向性和高能的。空间连贯性允许很容易产生经典的衍射现象,并用于多种测量和模式识别程序中,这是由于检测器技术和微型计算机的进步特别可行的。时间连贯性允许干涉仪在干扰梁之间的路径差异较大;因此,可以扩展常规干涉法。谁会在1965年猜到,因为光的空间和时间特性是使全息作用的特性。全息图是从物体衍射(或散射)以及已知或可重复的参考或背景梁产生的干扰模式中记录的强度分布。依次,全息图已使得非常有趣的新方法干涉方法。衍射与空间过滤器相结合,尤其是全息滤波器,构成了图像和信号处理方法的基础,这些方法已成为数字图像处理技术的有趣替代方法。今天尤其如此,因为光阀和空间光调节器的发展。激光束的方向性意味着它可以将其聚焦到一个非常小的高能点。这已经彻底改变了用于阅读,记录和显示目的的光学扫描系统。众所周知的声学和电形效应可有效地用于控制相干光束的方向和强度。
光学波导可用于从外部光源到人体内部的光线,用于诸如光动力疗法或光学网络等疗法。[1]在高级波导中,可以将光输送与生物传感函数结合,其中光学/电气单位通过相同的波导在相反的方向上运输并用于诊断。在大多数情况下,此类波导是在批处理过程中制造的,具有顺序层沉积和预先固化/蚀刻步骤,该步骤适用于基于硅的微电子。[2]从制造的角度来看,需要采用连续的,更高的生产方法,以在单个生产过程中迈向额外功能的整合。令人印象深刻的进展,他们生产了多功能光纤[3],这些光纤融合了光学波导,微流体元素和电极通过热塑料的热绘制。[4]从患者的舒适性角度来看,生物医学波导还需要从二氧化硅和热塑性塑料转移到更合规的材料,以通过匹配目标组织的刚度来提高体内生物相容性。[1,5]要应用于肌肉或心脏等组织中的光遗传激活,光纤需要具有弹性特征并可扩展。有机硅弹性体(例如聚二甲基硅氧烷(PDMS))是有趣的候选者,在低MPA范围内提供刚度值[6],并将其作为生物兼容型植入物材料提供了证实的记录。[4C][7] PDM的光学特性非常适合波引导:PDMS具有较低的光学损耗系数,从UV到NIR波长(在850 nm时≤0.05dB cm –1)[8]和相对较高的折射率(RI≥1.40)。[8,9]此外,PDMS显示出较高的可扩展性(> 100%)和拉伸强度(> 1 MPa),[10]为体内高运动场景提供合规性和可伸缩性。[4C,11]使用可伸缩的光学设备在高应变下进行光输送和检索的重要性,用于假体中的一系列生物医学scenarios,例如假体中的应变感应[12],以及对外周神经的光学刺激[11b]和脊髓。
质量控制在制造业中非常重要,以确保产品与精确规格相对应。传统上,手动检查协议已经实现了这一目标,尽管它们有效,但仍有改进的余地。例如,对水龙头等项目的检查不仅是人力的授权,而且需要大量时间,每个项目的平均时间为30到60秒。这些检查在很大程度上依赖于在具有挑战性的环境中进行的视觉评估,这可能导致受个人判断和环境影响影响的主观发现。传统检查技术由于不一致而存在问题,因为各种检查员对质量要求有不同的看法。进一步的长期重复职责可能会导致人类检查员的疲劳和错误。这些约束强调了开发更可靠的有效性和公正质量控制技术的重要性。光学技术的最新发展,尤其是在摄像机和视觉系统的领域中,提出了一种非常热爱的手动检查的替代方案。这些技术可以获取高分辨率图像并应用高级图像处理算法以识别具有精度和可靠性的缺陷[1]。通过将摄像机和先进视觉系统纳入检查程序,制造商可以大大减少检查时间并提高缺陷识别精度。自动化系统确实具有某些缺点,即使它们显着提高了准确性和效率。有时手动检查在解决困难的部分几何形状,改变气候条件和精确的校准要求方面更为成功。因此,每种情况的需求和局限性都将指导手和自动检查之间的决策。实施用于质量控制自动化的光学设备不仅可以使手动检查效率低下,而且还提高了生产操作的整体质量。自动化系统可以不经历疲倦而连续运行,这保证了对每种产品的一致和公正评估。此外,我们可以检查从这些系统中收集的数据以识别模式和趋势,从而为改善工业运营提供了宝贵的见解。
在过去的二十年中,Quantum Internet [1]和量子计算的实施已经有很大的推动。已经研究了这些量子技术的不同构件:量子记忆和中继器[2,3],单光子源[4],量子门和接口[5]。接口所有这些组件的研究最多的系统之一是光子[6]:它们可以在室温下进行操作而无需折叠,可以通过具有最小的损失的标准光学纤维网络传输,并提供了许多自由度来编码信息,例如。极化,频率或相位。选择编码方案时,可以优先使用高维方案,因为它具有许多优势,例如量子密钥分布和更高的信息率的更高安全性[7 - 10]。编码高维量子信息的最健壮的方案之一是时间模式,因为它们可抵抗纤维中的分散,并且自然提供了高维基集。在此方案中,信息是按照红外波长的时间自由度来编码的,然后通过FILER网络路由到不同的设备或用户。要在这些时间模式中读取量子信息,一个量子接口可以单独解决输入信号的每个时间模式,即以单模操作为特征,然后是必要的。近年来,量子脉冲门(QPG)[11]的上升是一种理想的单模界面,以操纵光的光模式。但是,终极多亏了可重新发现的单模传输函数,QPG可以从输入信号中选择单个时间模式;通过总和频率产生(SFG)过程将所选模式上转换为较短的波长,并且信号正交的部分与传输函数的部分保持不转化。以这种方式,QPG设备自然满足了量子接口的两个独立关键要求:它允许在不同波长下运行的量子光学设备进行通信,并利用时间模式来进行量子通信,计算和计量学。QPG的单模操作已经成功地用于许多应用程序[5],例如在量子状态层析成像[12]中,光谱带宽压缩到界面不同的量子系统[13]和量子计量学[14,15]中。为了进一步开发这些演示,以对日常应用,效率和纯粹的单模,其中包括空间和时间,操作至关重要。
Ivo Rendina 自 1985 年开始从事研究工作,同年他在位于罗马弗拉斯卡蒂的 ENEA 国家实验室开始撰写实验论文。1987 年,他获得物理学学位,并以研究员和博士生的身份开始与那不勒斯费德里科二世大学的电子和电气工程系合作。 1989 年至 2002 年,他在那不勒斯 CNR 的电磁和电子元件研究所 (IRECE) 从事科学研究,从学者开始,直至 2001 年担任研究所所长。他一直担任该职位,直到 2002 年,在 CNR 重组过程之后,IRECE 的“电子设备科”为微电子和微系统研究所 (IMM) 的成立做出了贡献,建立了 IMM 的“那不勒斯部门”,在那里他协调了一个非常活跃的研究小组的活动,该小组在光学设备、传感器和微系统物理领域非常活跃。2012 年,他获得了竞争性领域 09/E3 电子学和 02/B3 应用物理学的一级大学教授资格(根据 2012 年 7 月 20 日的 DDn222)。 2019 年,IR 成为 CNR 应用科学与智能系统研究所“Eduardo Caianiello”(ISASI) 所长,IMM 那不勒斯分部于 2020 年加入 ISASI。IR 是多个国际会议的主席和组织者,例如光学微系统 EOS 专题会议系列(自 2005 年起)、光学+光电子 SPIE 会议系列(自 2013 年起)、2013 年和 2014 年的 Fotonica 会议、2008 年的 EOS 年会、2007 年的第十二届传感器和微系统会议。他曾担任 EOS、SPIE、OSA 和 IEEE 在光学和光子学领域组织的多个国际会议的科学和技术委员会成员、国际科学期刊的客座编辑、国际博士委员会主席、意大利部委和捷克科学院的科学评估员。他拥有 9 项专利,撰写或合作撰写了 300 多篇出版物,并在纳米光子学和纳米系统领域的科学会议上发表了 20 多次受邀报告和全体会议报告。
ecent年份已经看到了衍射光学的复兴,这是由于纳米制度的纳米化阵列的进步,具有高精度,合理的吞吐量和相对易于生产的纳米阵列的纳米化阵列。这些发展开辟了一个所谓的平面光学器件的新时代,其关键组件称为Metasurfaces(由光学上薄的散射器组成的二维结构,例如次波长大小的天线),越来越多地用于替换整个传统光学元件的整体组合1 - 9。这些设备可以实现有效的梁转向,光学极化的局部控制以及光10-14的发射和检测。metasurfaces具有独特的功能,可以完全控制子波长度15中的光。包括对复杂衍射的波长和极化选择性控制。此外,元信息可以使新物理学和一系列现象与散装光学或3D超材料中可以实现的现象明显不同。这样一个例子是一般的反射和折射定律,可以通过使用带有规定的相位梯度的天线阵列来将元时间用于重定向,同时确保完全控制幅度和相位的前所未有的设计灵活性。元面包还可以量身定制近场响应,这在处理光源和探测器时至关重要,从而实现了完美的吸收,发射增强和光 - 物质相互作用的详细设计。metaSurfaces具有巨大的实现这些状态的潜力。metasurfaces现在已成为经典光学的主食,并且越来越有兴趣将扁平光子学启用的新型功能带入量子光学的领域16。量子光学技术需要单个光子,纠缠光子和其他类型的非古典光以及更新的检测方法的来源。量子状态可以基于不同程度的光自由度极化,方向和轨道角动量。,我们首先将注意力集中在经典光学设备(梁拆分器)上的两个独立光子的量子干扰17、18的演示中,这允许纠缠操作 - 量子光学领域的里程碑。但是,光束分离器是一种只能改变其反射率的简单设备,因此没有太多功能性。metasurfaces具有更广泛的功能,并且具有很大的操纵单光子并产生各种品种的潜力
摘要 2020 年 2 月,新西兰收集了大量近距离操作的地球静止卫星观测数据。这些测量是“幻影回声”实验的一部分,该实验是澳大利亚、加拿大、新西兰、英国和美国之间的合作活动。作为一个合适的案例研究,选择了任务扩展飞行器 1 (MEV-1) 和 Intelsat 901 之间的对接。在近距离操作的最后部分,两颗卫星位于太平洋上空,因此从新西兰可以看到。这些观测是在位于奥克兰北部旺阿帕劳阿半岛的国防技术局 (DTA) 空间领域意识 (SDA) 天文台进行的。所有图像均使用配备 FLI ML11002 CCD 相机的 11 英寸 (279 毫米) Celestron Edge HD 望远镜拍摄的。DTA 天文台最近已完全自动化,可以整夜连续收集数据。每个晴朗的夜晚,为了提高光度测定和天体测量的时间分辨率,我们经常会收集多达 1500 张图像,采样率约为每分钟 3 帧(每小时 180 帧)。基于 5 秒的曝光时间,卫星探测的视星等极限约为 15。实际上,只有当物体的星等约为 14 或更亮时,结果才是可以接受的。数据缩减是在 StarView 中执行的,这是 DTA 为 SDA 图像分析开发的专用软件工具。专门开发的数据分析算法用于恒星(恒星)图像和卫星(非恒星)图像的天体测量校准。基于视野中识别的大约 100-400 颗恒星,天体测量解决方案的典型 RMS 误差为 0.2 角秒。校准时使用了欧洲航天局的 GAIA 目录 (DR2),星等限制在 16 级以下。两颗卫星之间的相对天体测量随机测量误差通常小于 0.1 角秒,相当于太空中的 20 米以内。基于 GAIA G 波段的典型光度校准产生的 RMS 误差约为 0.1 – 0.2 个量级。同时,在良好的大气条件下,孔径光度测定的随机误差仅在 0.02 到 0.04 之间。利用 MEV-1 和 Intelsat 901 在近距操作期间获得的高质量测量结果,可以将观测到的天体测量和光度数据中的某些特征与任务期间执行的实际操作和其他关键事件关联起来。事实证明,现成的小孔径光学设备可成功用于监测地球静止轨道 (GEO) 上的近距操作并收集重要信息以供空间领域感知。
单光子检测(SPD)发现在许多乐趣科学和高级工程应用的许多最前沿领域中,从研究宇宙红外背景研究星系形成到超导量子的纠缠,单分子光谱学和遥感1、2。近年来,超导量子计算,高保真量子测量,量子密钥分布和量子网络在微波频率范围3中呼吁SPD的快速发展。当前的SPD方案对高频范围内的光子具有良好的灵敏度(例如,可见光)。然而,对于低频,低能,微波光子,它们的灵敏度大大降低。因此,在这种低频下对单个光子的检测很容易出现经典噪声的错误。石墨烯单光子检测器(即石墨烯超导约瑟夫森连接)已成为一个新平台,以满足检测单微波光子4、5的需求。它能够在较大的频率范围内执行SPD,尤其是由于其线性能量分散关系,在红外和微波频率下。像石墨烯一样,CD 3 AS 2中的螺旋表面状态,Dirac半学6-8,也具有狄拉克线性分散关系。结果,CD 3 AS 2也对低频微波光子敏感。与石墨烯相比,基于以下原因,CD 3 AS 2对于微波光子检测9可能更有希望。首先,已经报道了较高的电子迁移率。1 a。的确,最近在狄拉克半米CD 3中报道了高达10 7 cm 2 /vs的迁移率AS 2单晶10。第二,它们很容易通过许多常规的生长技术(例如蒸气运输11,MBE 12,PLD 13技术)而生长;这使他们可以轻松地集成到任何光学设备结构,例如微波腔。第三,CD 3 AS 2中的唯一电子和光学性能可能允许偏振分辨的光子检测14。第四,CD 3中的超导性为2薄膜15,CD 3中的超电流状态通过超导接近效应16-18的基于2个基于2个基于2个基于2个薄膜。这可能会使发育良好的单个光子检测方案(例如超导纳米线和过渡边缘传感器2)在CD 3中作为2材料系统中的可能性。final,拓扑半学的螺旋表面状态与常规超导体结合使用,可以容纳Majorana零模式,可用于构造拓扑量子。最近还提出了使用Majora零模式的新单个光子检测方案。一起,预测微波单光子检测能力和量子功能将导致高保真量子计算20。在本文中,在近端诱导的超导状态中的微波反应以CD 3 AS 2 AS 2 AS 2 AS 2 AS 2 AS 2的Super-Contucting量子干扰装置(Squid)结构表示,如图在我们的鱿鱼装置中,在范围为0.5至10 GHz的各种微波频率下观察到大型照片响应。