摘要...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................
微型和纳米结构的表面受到了广泛的关注,因为它们在传感器技术,表面摩擦学以及依从性和能量收集等广泛应用中的潜力。已经研究了几种修改材料表面,例如血浆处理,离子梁溅射,反应性离子蚀刻和激光处理等材料表面[1-3]。在这些方法中,由于其良好的空间分辨率和对不同材料(例如金属,半导体,介电和聚合物)的良好空间分辨率和高可重现性,激光表面处理近年来引起了人们的兴趣[4-6]。从连续波(CW)到超短梁以及从UV到IR的工作波长已经使用了许多类型的激光源[7-8]。由于激光 - 物质相互作用,从纳米到微尺度的各种结构和模式取决于激光参数和材料特性,例如激光诱导的周期性表面结构(LIPS),2D圆形液滴和特定的微型结构,称为Spikes [9-14]。
连续的高强度光暴露会抑制厌氧铵氧化(Anammox)细菌,尽管对Anammox反应堆性能的特定影响尚不清楚。这项研究研究了长期光应力对Anammox污泥反应堆的影响,并探讨了茶多酚作为减轻照片氧化损害的振奋干预措施的使用。结果表明,反应器的氮去除效率(NRE)在10,000 Lx的光条件下迅速恶化至41.4%。然而,补充了1mg·l -1和5mgÅL -1茶多酚的反应器分别为75.2%和82.5%。通过清除活性氧(例如×OH和H 2 O 2),以及增强包括总超氧化物歧化酶和gluta thione thione过氧化物酶的活性,添加茶多酚通过清除活性氧的氧化应激来减轻氧化应激。Kuenenia念珠菌受到光的负面影响,而未分类的_f__肉胶质科则在光压力下繁荣发展。这些发现为在光照暴露下开发稳定的氮去除系统的开发提供了见解。
从环境中的二氧化碳中再生氧气是未来用于太空的生命支持系统的基本技术构件。BIORAT1 B2 阶段项目包括开发机上演示器 (OBD) 的初步设计评审 (PDR) 级设计,该演示器将托管在国际空间站上的欧洲抽屉架 2 (EDR2) 设施中。OBD 的核心是一个光生物反应器 (PBR),其中充满了螺旋藻 (Limnospira indica PCC 8005),它通过光合作用将二氧化碳和光转化为氧气。液体回路 (LL) 将溶解在培养基液体中的氧气和二氧化碳在光生物反应器 (PBR) 和国际空间站舱环境空气之间输送。气体交换模块 (GEM) 能够进行氧气和二氧化碳的交换,将培养基液体与环境空气分离,同时将液体保持在 LL 内。该飞行硬件的设计由使用面包板模型 (BBM) 获得的测试结果支持。本文介绍了使用 BBM 进行的长期螺旋藻培养试验的结果,以验证 PBR 和 LL(包括 GEM)的长期功能。介绍了 PBR 性能以及与培养藻类生长和氧气产生模型的相关性。还介绍并讨论了未来的发展和预期结果和前景。
在本研究中,使用了能够选择性地与被荧光染色的单链目标DNA(荧光DNA)结合的单链DNA修饰的2种大小和材质不同的探针粒子(金纳米粒子,Probe1;聚苯乙烯微粒,Probe2),尝试通过用激光照射含有这些粒子的溶液,利用光的力量(光诱导力)以及由该力引起的光诱导对流,使目标DNA和探针粒子局部集中,从而加速DNA双链的形成。结果发现,经过5分钟的光照,探针1和2的凝集物形成约数十μm大小,荧光DNA被聚集并捕获在凝集物的间隙中。还发现,与探针颗粒表面的DNA牢固结合的互补碱基序列(匹配DNA)越强,发出的荧光信号就越强(图2左)。特别地,本研究中使用的微粒经历了“米氏散射”,即当微粒的尺寸与激光波长相当时,光会发生强烈散射的现象。这种增加的光功率可用于提高浓缩效率。此外,由于光力增加时组装体变得更加稳定,因此人们认为可以实现迄今为止难以实现的固液界面光诱导双链形成的加速。通过利用该机制,我们实现了 7.37 fg/μL 的检测限,成功以比传统数字 PCR 方法(检测限:约 200 fg/μL)高一到两个数量级的灵敏度检测 DNA(图 2,右)。通常情况下,由于互补 DNA 分子之间碰撞的概率较低,在如此稀释的 DNA 溶液中形成双链需要很长时间。异探针光学浓缩法对 DNA 的检测之所以具有高灵敏度和快速性,被认为是由于通过显著增加聚集体内的局部 DNA 浓度,加速了这些极少量 DNA 双链的形成。此外,我们证明了通过用光照射金纳米粒子并利用产生的光的热量(光热效应)来松散双链键并增加键断裂的概率,来自聚集体的荧光信号表现出极高的碱基序列特异性,从而能够清楚地检测和识别24个碱基长的目标DNA中仅含有单个碱基的突变,包括位置依赖性(图3)。仅使用聚苯乙烯(Probe2)的情况,在所用激光的波长(1064nm)下几乎没有光热效应,因为与探针是同一类型,所以称为“同源探针”,否则称为异源探针。
摘要 糖尿病(DM)是一种无法治愈的慢性非传染性疾病,会导致血糖水平发生改变。静脉激光照射血液 (ILIB) 具有抗炎和血管扩张作用,此外还具有抗心律失常作用,有助于降低血糖和稳定荷尔蒙和免疫系统。本研究旨在调查静脉激光照射血液 (ILIB) 对改善糖尿病患者生活质量的有效性。这是在 Pubmed、Scielo 和 Lilacs 数据库中进行的文献综述,使用英语和葡萄牙语描述符。发现三篇文章,指出疼痛、热和触觉敏感度有所改善。因此,尽管关于该主题的研究很少,但可以得出结论,与静脉激光照射血液相关的糖尿病已显示出积极的效果。关键词:ILIB、物理治疗和糖尿病。知识领域:物理治疗简介
摘要。在辐射高度重复速率(1 kHz - 1 kHz - 1 mHz)flest(1 kHz - 1 MHz)fomettecond(450 fs)乘以最常用的三种商业聚合物(聚(PVC),聚(PVC),聚乙二醇)(PET)和聚丙烯(PP)的响应据报道,NM(均为1.40 j/cm 2)和1030 nm(1.70 j/cm 2)的NM(1.40 j/cm 2)均报道,获得了有关吸收机制如何影响这些材料的加工效率的研究。 可调节的消融深度和直径是通过在恒定功能和脉冲数量下修改重复速率来完成的。 结果突出了吸收机制,重复速率范围和材料的热特性的作用,以使消融效率受益。 此外,高重复率的使用改善了激光处理,减少了扩展的热效应并增加了消融均匀性。最常用的三种商业聚合物(聚(PVC),聚(PVC),聚乙二醇)(PET)和聚丙烯(PP)的响应据报道,NM(均为1.40 j/cm 2)和1030 nm(1.70 j/cm 2)的NM(1.40 j/cm 2)均报道,获得了有关吸收机制如何影响这些材料的加工效率的研究。可调节的消融深度和直径是通过在恒定功能和脉冲数量下修改重复速率来完成的。结果突出了吸收机制,重复速率范围和材料的热特性的作用,以使消融效率受益。此外,高重复率的使用改善了激光处理,减少了扩展的热效应并增加了消融均匀性。
背景:新出现的证据支持夜间光照 (LAN) 与成人肥胖或超重之间存在关联。然而,儿童时期 LAN 暴露的影响尚未进一步研究。目的:在本研究中,我们旨在确定 LAN 暴露是否与幼儿体重有关。研究设计和方法:我们使用了 Fr1da 队列研究的数据,该研究从 2015 年 2 月至 2019 年 3 月对德国巴伐利亚州的儿童进行了早期胰岛自身免疫筛查。分析中共纳入了 62,212 名年龄 < 11 岁且拥有完整居住信息的儿童。自我报告的体重和身高用于计算年龄和性别特定的身体质量指数 (BMI) z 分数。LAN 暴露基于可见红外成像辐射计套件的遥感图像,并分配到儿童的居住地。我们使用广义加性模型来估计 LAN 暴露与 BMI 之间的关联,并调整了潜在的混杂因素。结果:我们观察到,在基线(2015 年)LAN 暴露每增加 10 nW/cm 2/sr,BMI z 分数增加 34.0%(95% 置信区间 (CI):25.4 – 42.6),而在筛查前一年 LAN 暴露增加 32.6%(24.3 – 41.0),均根据年龄和性别进行了调整。在根据社会经济地位和城市化程度进行调整后,也观察到了类似的关联。结论:我们的研究结果表明,户外光照可能是儿童时期体重增加的风险因素。
1化学系数学和自然科学学院,JL帕迪哈丹大学。Raya Bandung Sumedang Km.21,Kabupaten Sumedang 45363,印度尼西亚; u.pratomo@unpad.ac.id(U.P.); rapadhiaa30@gmail.com(R.A.P.); irkham@unpad.ac.id(I.I。); allyn@unpad.ac.id(A.P.S.)2东京大都会大学城市环境科学研究生院应用化学系,日本哈奇奥吉1-1 Minamiosawa,日本; jacob.mulyana@deakin.edu.au 3教育学院,艺术与教育学院,迪肯大学,伯伍德高速公路221伯伍德,伯伍德,VIC 3125,澳大利亚4研究中心,高级材料研究中心,国家研究与创新局,卡瓦桑·塞恩斯·塞恩斯·塞恩斯·塞恩斯·塞恩Habibie,Tangerang Selatan 15314,印度尼西亚5个合作研究中心,高级能源材料,国家研究与创新机构Institut Teknologi Bandung,Bandung 40132,印度尼西亚 *通信 *通信:Inda009@brin.go.div
针对光谱成像技术在卫星遥感、生物医学诊断、海洋探测与救援、农林监测与分类、军事伪装识别等方面的应用需求,本文采用532和650 nm激光器作为光源,利用多光谱强度相关成像设备——基于稀疏性约束鬼成像(GISC)的快照式光谱相机实现目标的精确识别。本文阐述了快照式GISC光谱成像原理,并开展了基于主动激光照明的GISC光谱成像目标识别技术实验研究工作。实验结果表明,采用532 nm激光作为光源照射目标物体可以准确识别绿色目标字母“I”;采用650 nm激光作为光源照射目标物体可以准确识别红色目标字母“Q”。并给出了GISC光谱相机在446~698nm波长范围内单次曝光获取的彩色目标“QIT”的光谱成像结果,包括伪彩色图和彩色融合图。为了进一步说明实验的可行性,对重建图像的光谱分布进行了分析,具有重要的实际意义和工程价值。