欢迎来到德里国家理工学院电子和通信工程系(ECE)。它成立于2010年,立即在该研究所的开始下立即在人力资源与发展部(MHRD)的主持下建立。印度。 目前,部门正在提供两个本科课程。 Tech(ECE)和B. 技术(VLSI设计和技术)。 部门提供两个研究生课程,为M. Tech。 ECE和M. Tech。 ece(vlsi)。 该系还提供博士学位。以及相关领域的博士后奖学金(PDF)计划。 它在电子设备和电路,电子测量和仪器,微处理器和微控制器,微波炉和天线设计,光纤通信和光学设备,多层以及高级通信和设计自动化和仿真实验室中具有出色的实验室和研究设施。 该部门已收到电子技术和信息技术部(MEITY),科学技术部(DST) - SERB和其他资助机构的项目,赠款和奖学金。 该部门与印度和国外的学术机构与研究机构进行了积极的合作。印度。目前,部门正在提供两个本科课程。Tech(ECE)和B.技术(VLSI设计和技术)。部门提供两个研究生课程,为M. Tech。ECE和M. Tech。 ece(vlsi)。 该系还提供博士学位。以及相关领域的博士后奖学金(PDF)计划。 它在电子设备和电路,电子测量和仪器,微处理器和微控制器,微波炉和天线设计,光纤通信和光学设备,多层以及高级通信和设计自动化和仿真实验室中具有出色的实验室和研究设施。 该部门已收到电子技术和信息技术部(MEITY),科学技术部(DST) - SERB和其他资助机构的项目,赠款和奖学金。 该部门与印度和国外的学术机构与研究机构进行了积极的合作。ECE和M. Tech。ece(vlsi)。该系还提供博士学位。以及相关领域的博士后奖学金(PDF)计划。它在电子设备和电路,电子测量和仪器,微处理器和微控制器,微波炉和天线设计,光纤通信和光学设备,多层以及高级通信和设计自动化和仿真实验室中具有出色的实验室和研究设施。该部门已收到电子技术和信息技术部(MEITY),科学技术部(DST) - SERB和其他资助机构的项目,赠款和奖学金。该部门与印度和国外的学术机构与研究机构进行了积极的合作。
学时 先修课程/共同课程 理论 实践 ELEC510 电力工程专题 3 3 0 ELEC414 ELEC519 电机设计 3 3 0 ELEC410 ELEC513 先进电力系统 3 3 0 ELEC511 ELEC514 高压工程 3 3 0 ELEC511 ELEC515 先进控制系统 3 3 0 ELEC412 ELEC516 可持续及可再生能源 3 3 0 ELEC511 ELEC518 电力系统保护 3 3 0 ELEC511 ELEC521 微电子学 3 3 0 ELEC322 ELEC522 电子通信电路 3 3 0 ELEC431 ELEC523 数字系统设计 3 3 0 ELEC322 ELEC442 嵌入式系统3 3 0 ELEC341 ELEC532 数字通信 3 3 0 ELEC431 ELEC533 移动通信 3 3 0 ELEC532 ELEC534 微波工程 3 3 0 ELEC312 ELEC535 光纤通信 3 3 0 ELEC532 ELEC536 电子与通信工程专题
Module-1 ( 8 Hours ) Laser and Optical Fibers: LASER : Basic properties of a LASER beam, Interaction of Radiation with Matter, Einstein's A and B Coefficients (derivation of expression for energy density), Laser Action, Population Inversion, Metastable State, Requisites of a laser system, Nd-YAG Laser, Application of Lasers.光纤:原理和结构,接受角度和数值孔径(Na)以及NA表达的推导,光纤分类,衰减和纤维损失,应用:光纤通信。数值问题。先决条件:光自学习的特性:总内部反射与传播机制(光纤)
光纤是一种沿其长度传输光的玻璃或塑料纤维。光纤光学是应用科学与工程的交叉学科,涉及光纤的设计和应用。光纤广泛用于光纤通信,它允许在更长的距离和更高的带宽(数据速率)下传输,因为光的频率比任何其他形式的无线电信号都要高。光通过全内反射保持在光纤的核心中。这使得光纤充当波导。光纤被用来代替金属线,因为信号沿光纤传输时损耗更小,而且它们也不受雷暴引起的电磁干扰的影响。光纤还用于照明,并被包裹成束,因此它们可用于传输图像,从而允许在狭小空间内观看。专门设计的光纤用于各种其他应用,包括传感器和光纤激光器。
在光纤通信中,通常使用光学强度的强度调制方案来传输信号。连贯的光传输协议,其中强度和相位都用于携带信息,也已用于满足更高容量的需求。连贯的光学传输可以通过数字信号处理技术在公里的沙子上进行长途通信,并结合数十种波长在单个光纤中划分。由于这些特征,连贯的光学传输主要用于超过100 km的中继线网络。近年来,由于强度调制以及微型型和降低相干设备的功率消耗,近年来对100 km或更短的DATA中心连接的需求已经迅速增长。
摘要:使用光子带镜的陷阱和引导光的光子晶体纤维(PCF)通过许多学科的巨大科学创新和技术应用彻底改变了现代光学器件。最近,受到物质拓扑阶段的启发,理论上已经提出了Dirac-Wortex拓扑pcfs,它具有有趣的拓扑特性和光纤通信中前所未有的机会。然而,由于制造和表征的重大挑战,迄今为止,dirac-vortex拓扑PCF的实验证明仍然难以捉摸。在这里,我们报告了使用标准的堆栈和抽签制造工艺对二氧化硅玻璃毛细管的实验实现。此外,我们通过实验观察到dirac-wortex的单极化单模式与