胎儿,婴儿和幼儿(FIT)神经影像学研究 - 包括磁共振成像(MRI),脑电图(EEG),磁性摄影学和功能性的近红外光谱光谱学等,以及其他 - 进一步的互动洞察力,使早期的大脑发育和早期的培养在过去的2次中获得了早期的发展。在更广泛的神经影像研究中,多站点协作项目,数据共享和开源代码越来越成为规范,促进了大数据,共识标准以及快速的知识转移和发展。鉴于上述好处,以及资金机构的最新举措,以支持多型和多模式拟合神经影像学研究,FIT领域现在有机会建立可持续,协作和开放的科学实践。通过组合数据和资源,我们可以解决拟合领域最紧迫的问题,包括小效应大小,可复制性问题,
cosine 将物理和技术相结合,为我们的客户带来创新的测量解决方案。cosine 开发和构建用于太空、空中和地面的光学和现场测量系统。这些系统用于科学、工业、医疗、环境、能源、农业/食品、安全、半导体和空间应用,客户范围从小型高科技公司到欧洲航天局和美国宇航局。cosine 团队由 50 多名受过高等教育的人组成,他们与客户密切合作,透明地进行开发。凭借我们在不同技术领域的丰富经验,我们提供开箱即用的测量解决方案。技术涵盖应用物理领域,在光谱学、激光系统和辐射成像系统方面拥有丰富的经验。我们利用我们在物理、电子和软件方面的知识以创新的方式解决问题。我们提供高光谱成像产品,
化学计量和摩尔概念,化学反应,热化学,原子的电子结构,周期性特性,化学键合,分子间力以及气体,液体和固体的行为。等效于仅实验室的一部分Chem 103。提供了一种机制,以授予没有演讲部分的经验来获得信用。Chem 101和Chem 105的组合相当于Chem 103。要求:教师课程名称的同意:广度 - 物理科学。计算自然SCI REQ级别 - 基础L&S信用 - 在L&S中以L&S为信用中的文科和科学信用额度可重复:无上一次教授:2025年春季学习成果:1。进行,修改和分析与化学计量,热化学和光谱学有关的实验,同时开发基本安全性,测量和样品分离技术。受众:本科
聚氨酯,多功能聚合物在整个行业进行了广泛探索,可以通过融合诸如灯笼的材料(例如兰萨尼德)来增强。这项研究提出了一种新颖的方法,采用单发合成,使用多元醇,异氰酸酯,samarium和Holmium氧化物创建聚氨酯兰烷化复合材料。ftir和拉曼光谱学肯定了成功的聚氨酯基质形成,而XRD在灯笼载量的矩阵中揭示了不同的相对于对照泡沫中的柔软的低结晶聚氨酯。光学显微镜显示出由于samarium和holmium引起的形态改变。热重分析显示,与对照泡沫相比,复合热稳定性提高。展望未来,这些结果促使对聚氨酯兰特尼复合材料的进一步探索,尤其是在利用各种应用的财产变化方面。
颜色可以唤起我们对童年、大自然的壮丽、文化根源或人类辉煌的回忆。自史前时代以来,人类就着迷于将颜色应用于日常物品,为它们赋予坚实的文化和象征意义。如今,颜色可以统一和划分、象征和物化、编码和简化,所有这一切都归功于颜料、具有无机或有机成分、天然或合成的材料,这些材料在科学研究和实际应用中引起了极大的兴趣。对颜料的化学和物理行为及其所经历的修改、改变和相互作用的了解基于使用最常见技术进行的研究和调查的结果,这些技术是通过侵入性或非侵入性分析进行的,这些分析是在现场或实验室环境中应用的,例如光谱学、比色法、X 射线衍射法、荧光分析、扫描电子显微镜 (SEM)、透射电子显微镜 (TEM)、基于质谱的技术,但也通过专门开发的创新技术。
高频传感器开发(阿默斯特)罗伯特·杰克逊 | jackson@ecs.umass.edu 为太赫兹范围内的频率提供世界一流的测量能力。它将用于材料的高频光谱分析和测试高速通信技术。高通量基因表达/生物标志物(伍斯特医学院)简·弗里德曼 | jane.freedman@umassmed.edu 通过使用黄金标准 qRT-PCR 和 Fluidigm 的定制集成射流电路技术,提供高通量/快速基因表达和完整的 miRNA 分析。人体磁共振中心(阿默斯特)杰奎琳·库兰 | jkurland@comdis.umass.edu 用于学术和行业研究的大脑和全身结构和功能成像和光谱学。人源化小鼠(伍斯特医学院)迈克尔·布雷姆 | michael.brehm@umassmed.edu 可以植入人类细胞/组织进行功能分析的免疫缺陷小鼠。
关于课程 微波覆盖了电磁波频谱的一个重要窗口(~ 300MHz 到 ~ 300GHz)。自从几十年前它出现在国防部门、材料加工、光谱学、通信等领域以来,它在相关技术的各个方面都得到了迅速发展,包括源、放大器、耦合器、天线、探测器等。这些进步使得紧凑型有源和无源微波/毫米波设备被部署在从空间通信系统到个人手机等各种环境中!创建新设计、模拟性能、制造设备和测试是需要解决的挑战。本课程的目的是介绍电磁理论的基础知识以及毫米波和太赫兹技术在国防、通信、工业和科学应用等方面的最新进展。此外,还将向各技术机构的年轻教职员工介绍/毫米波和太赫兹高功率源和放大器(包括天线、超表面、频率选择表面、光子带隙结构等)的建模问题。
2015 年,LHCb 合作组报告在衰变中观察到与粲偶素五夸克态一致的共振态[1]。实际上,衰变成的状态可能具有独特的特征[2]。最小夸克含量可被识别为,即粲偶素五夸克。虽然自夸克模型建立以来就预测了这种由四个夸克和一个反夸克组成的五夸克的存在[3–5],但对它的实验分析却花了很长时间。这种新粒子彻底改变了我们对于奇异状态的理解,这些状态无法包含在标准光谱学的传统夸克-反夸克和三夸克方案中。粲偶素五夸克被标记为,带电荷,并与粲偶素耦合。此外,它们是在重味重子领域观察到的第一个奇异状态。
遥感时代被认为始于 1858 年,当时气球驾驶员 G. Tournachon(别名 Nadar)从他的气球上拍摄了巴黎的照片。后来,信鸽、风筝、飞机、火箭和无人气球也被用于早期成像。然而,遥感的历史可以与光学和航空学的发展和理解联系起来。亚里士多德(公元前 300 年)被认为是第一个进行光学实验的人。伽利略·伽利莱(1609 年)和艾萨克·牛顿爵士(1666 年)科学地解释了光学和光谱学。系统的航空摄影始于第一次世界大战期间,用于军事监视和侦察目的。在第一次世界大战期间,飞机被大规模用于这些目的,因为飞机被证明是比气球更可靠、更稳定的地球观测平台。然而,航空摄影和照片解译的重要发展发生在第二次世界大战期间。在此期间,近红外摄影、热传感和雷达等其他成像系统也得到了发展。
我们表明,高谐波光谱学为探测线性响应范围以外的准晶体的电子特性提供了高级途径。着眼于Aubry-André-Harper(AAH)链,我们从谐波发射强度中提取了多重型光谱,这是电子态在准晶体中电子状态空间分布的重要指标。此外,我们解决了迁移率边缘的检测,划定广义AAH模型中局部和扩展的特征状态的重要能量阈值。这些迁移率边缘的精确识别阐明了金属 - 绝缘体的跃迁以及这些边界附近的电子状态的行为。将高谐波光谱与AAH模型合并,为理解排序晶体中的本地化与扩展状态之间的相互作用提供了一个有力的框架,以在线性响应研究中未捕获的极宽的能量范围,从而为指导未来的实验研究提供了宝贵的见解。