基于 LSTM 和 TRISHNA 太空任务中使用的设计,多光谱线性阵列为整个光谱范围(短波 (SWIR) 到甚长波 (VLWIR))的红外图像开辟了新的太空商业机会 Lynred 将于 6 月 8 日至 10 日在法国巴黎附近的 Optro 2022 上讨论用于太空应用的多线性和多光谱红外传感器的新发展 法国格勒诺布尔,2022 年 6 月 7 日——Lynred 是一家为航空航天、国防和商业市场提供高质量红外 (IR) 探测器的全球领先供应商,今天宣布推出两款多光谱线性阵列红外探测器,用于一系列地球观测任务。Pega 和 Capyork 旨在集成到成像卫星、用于水循环观察和干旱评估的跟踪和测量仪器以及海陆表面温度监测以及许多其他潜在的商业空间应用中。多光谱红外探测器使用户能够在覆盖从短波到甚长波的红外范围的多个光谱波长带中获得光测量值。它们在卫星上工作,收集沿卫星轨道从同一场景同时拍摄的一系列红外图像数据,检索特定于地球观测应用的科学信息。作为基于 Lynred 为两项太空任务开发的红外探测器的衍生产品:由法国国家空间研究中心 CNES 领导的 TRISHNA(用于高分辨率自然资源评估的热红外成像卫星)和欧洲哥白尼陆地表面温度监测任务 LSTM,Pega 和 Capyork 将使未来的地球观测任务仪器能够:
由于振动和旋转跃迁,一氧化碳和甲烷等许多分子在中红外范围内都有强的吸收线。1 自 1994 年发明以来,中红外量子级联激光器 (QCL) 已成为分子气体传感的流行选择。2 分子光谱的精度和分辨率高度依赖于 QCL 的光谱线宽。3 由于接近于零的线宽展宽因子 (LBF),4 QCL 本身的固有线宽只有几百赫兹,接近肖洛-汤斯极限。5 然而,电流源噪声、温度波动和机械振动引起的闪烁噪声(1/f 噪声)会显著加宽自由运行 QCL 的实际线宽至兆赫兹范围。6 为了将 QCL 的光谱线宽缩小到千赫兹或赫兹范围,已经开发出各种各样的频率稳定技术。一种主要方法是将 QCL 频率锁定在分子吸收线的一侧,但代价是波长可调性的损失。7、8 另一种方法是通过庞德-德雷弗-霍尔方法将 QCL 锁定在高精度光学腔体上,这种方法容易受到外部声学和机械振动的影响。9 – 11 一种更常见的方法是将 QCL 相位锁定在近红外光学腔体上。
b'在室温下,已证实 GaN 半导体中 1.5 \xce\xbc m 电信波长的稀土激光作用。我们已报道了在上述带隙激发下,通过金属有机化学气相沉积制备的 Er 掺杂 GaN 外延层产生的受激发射。使用可变条纹技术,已通过发射强度阈值行为作为泵浦强度、激发长度和光谱线宽变窄的函数的特征特征,证实了受激发射的观察。使用可变条纹设置,在 GaN:Er 外延层中已获得高达 75 cm 1 的光增益。GaN 半导体的近红外激光为光电器件的扩展功能和集成能力开辟了新的可能性。'