1 简介 1 1.1 为什么要写这本书? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4.2.1 光谱线 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4.5 光学薄和光学厚 . ...
Q10。 在第一个激发氢原子的激发状态下计算电子的轨道周期。 ans: - 对于基态,对于第一个激发状态,n = 1,n = 2现在,tnαn 3 t 2 = 2 3 t 1 1 1 3 t 2 = 8t 1 I.T 2 =在基态轨道周期的8倍。 Q11。 通过12.5 eV能量的电子束激发基态的氢原子。 从其激发状态中找出原子发出的最大线数。 ans。 基态的能量E 1 = - 13.6 EV能量=激发状态下的12.5 eV能量,-13.6 + 12.5 = - 1.1 eV,但是,E n = --- 13.6 = -1.1,然后我们将获得n = 3。 n 2因此,光谱线= 3 kVs ziet chandigarhQ10。在第一个激发氢原子的激发状态下计算电子的轨道周期。ans: - 对于基态,对于第一个激发状态,n = 1,n = 2现在,tnαn 3 t 2 = 2 3 t 1 1 1 3 t 2 = 8t 1 I.T 2 =在基态轨道周期的8倍。Q11。 通过12.5 eV能量的电子束激发基态的氢原子。 从其激发状态中找出原子发出的最大线数。 ans。 基态的能量E 1 = - 13.6 EV能量=激发状态下的12.5 eV能量,-13.6 + 12.5 = - 1.1 eV,但是,E n = --- 13.6 = -1.1,然后我们将获得n = 3。 n 2因此,光谱线= 3 kVs ziet chandigarhQ11。通过12.5 eV能量的电子束激发基态的氢原子。从其激发状态中找出原子发出的最大线数。ans。基态的能量E 1 = - 13.6 EV能量=激发状态下的12.5 eV能量,-13.6 + 12.5 = - 1.1 eV,但是,E n = --- 13.6 = -1.1,然后我们将获得n = 3。n 2因此,光谱线= 3 kVs ziet chandigarh
我们通过填充液滴蚀刻的纳米霍尔斯,基于嵌入单晶Algasb矩阵中的煤气量点(QD)(QD)展示了一种新的量子限制的半导体材料。液滴介导的生长机制允许形成非经典单QD光源所需的低QD密度。光致发光(PL)实验表明,在电信波长下,燃气QD具有间接的单向频率跨度。这是由于受纳米结构尺寸控制的量子限制的结果,导致导带中γ和L阀的比对。我们表明,在接近1.5μm波长的直接带隙状态下,GASB QD具有I型频带对齐,并且具有狭窄的光谱线的激发量发射,并且由于高材料质量和尺寸均匀性,因此具有狭窄的光谱线和非常低的PL发射不均匀扩展。这些特性在红外量子光学和量子光子整合的应用方面非常有前途。
对益生元分子的搜索正式进入了詹姆斯·韦伯(James Webb)太空望远镜的新时代。船上近红外仪器的功能比在空间仪器中提供的敏感性和分辨率更高。计划推出更多近红外望远镜(例如2025年的Spherex),必须拥有手头上重要分子的实验室数据,以指导该频谱区域的观察结果。我们在这里介绍了1中的益生元乙二醇(HC 3 N)分子的第一个已发表的线列表。5 µm区域。 分子通过使用低温缓冲液冷却来冷却至20 K,从而获得了2ν1频段的分辨良好的RO振动状态,并使用蛀牙调查光谱探测并分配了分配。 使用PGOPHER计算旋转常数,并根据氰化氢测量光谱线强度。 我们建议HC 3 N 1。 5 µM条带作为Hycean和超级地球体的传播光谱的观察靶标。5 µm区域。分子通过使用低温缓冲液冷却来冷却至20 K,从而获得了2ν1频段的分辨良好的RO振动状态,并使用蛀牙调查光谱探测并分配了分配。使用PGOPHER计算旋转常数,并根据氰化氢测量光谱线强度。我们建议HC 3 N 1。5 µM条带作为Hycean和超级地球体的传播光谱的观察靶标。
摘要。我们报告了基于多普勒扩大温度计(DBT)的最初研究,以开发紧凑而实用的原代温度计。DBT传感器使用热原子的固有特性,即被探测的原子的光谱线特征的多普勒宽度。DBT传感器建立在主要的温度测定法基础上,不需要校准或参考,因此原则上可以实现可靠的长期现场热力学温度测量。在这里,我们描述了我们的方法,并报告了使用碱金属蒸气细胞进行初始概念验证研究。我们的重点是开发基于DBT的长期稳定温度计,该温度计可用于可靠地测量长时间的温度以及在核废存储设施中不切实际的传感器检索以进行重新校准的环境。
3。实用1。研究折射率的变化,并因此确定给定棱镜材料的分散能力。2。使用Bi-prism确定钠光的波长。3。通过牛顿环方法确定钠光的波长。4。米歇尔(Michelson)对激光光的干涉仪。5。使用Michelson干涉法中的金属杆中的磁截图。6。Fabry-Perot干涉仪,带有钠光源。7。使用衍射光栅和光谱仪测量汞源光谱线的波长。8。二极管激光衍射实验(单缝,双缝,多个缝隙,细线,横线,电线网,透射光栅,粗光栅,圆形光圈)。9。验证马鲁斯的裤子。另外,使用偏振仪确定甘蔗糖溶液的特异性旋转。10。研究微波炉的干扰,衍射和极化。
在紫外线,可见和红外中心波长中可用10 - 80nm的带宽可用,非常适合生物医学应用和仪器集成193-399nm,400-6999nm,以及700-1650nm的700-1650nm CWL CWL选项可用的传统覆盖物700 - 1650nm带通道干扰档案的传统型号用于范围狭窄的范围。这些过滤器是一系列生物医学和定量化学应用的理想选择。带通滤波器过滤器被广泛用于各种应用中,包括临床化学,环境测试,比色,元素和激光线分离,火焰光度法,荧光和免疫测定。此外,传统涂层700 - 1650nm带通滤波器用于从ARC或气体排放灯中选择离散的光谱线,并将特定线与AR,KR,ND:YAG和其他激光器分离。传统涂层700 - 1650nm带通滤波器通常与激光二极管模块和LED一起使用。
为了控制两级量子系统的状态(例如离子量子轴的自旋状态),光学频率梳子通过从一个梳子牙齿中刺激的吸收并刺激到另一个梳子牙齿中的刺激吸收了两光子的拉曼过程。如果两级能量差距是激光重复速率的整数倍数,则谐振拉比振荡会激发。当后者的频率接近量子线的过渡速度时,Bloch球体上可能存在强烈的静脉锁定循环,该循环可能会产生一个非常狭窄的,相同间隔的光谱线的亚谐波系列。如果将光频梳的重复速率适当地调整为后者(最多达到平均载体包络频率),则应到达两级系统的高度谐振动力学状态,在任何一对相邻的梳子齿中,都会发生拉曼刺激的吸收和发射过程的情况。
While the atmosphere consists of only a tiny fraction of the overall stellar radius and mass (respectively about 10 − 3 and 10 − 12 ), it represents a crucial boundary layer between the dense interior and the near vacuum outside, from which the light we see is released, imprint- ing it with detailed spectral signatures that, if properly interpreted in terms of the physics principles coupling gas and radiation, provides essential information on stellar 特性。尤其是,光谱线的身份,优势和形状(或轮廓)包含具有大气实际状态的重要线索,例如化学成分,电离状态,有效温度,表面重力,旋转速率。但是,必须根据详细的模型气氛正确解释这些这些,该模型气氛适当地说明了基本的物理过程,即:原子的激发和电离;辐射的相关吸收,散射和发射及其对光子能量或频率的依赖;最后,这如何导致发射通量与频率的这种复杂变化,从而使观察到的光谱构成了特征。这种模型大气的解释恒星光谱构成了推断质量,半径和光度等基本恒星特性的基础。
列出了针对奇异状态及其特性的纳米光共振系统的基本效应。与晶格的几何形状和材料组成密切相关,在光谱中出现谐音的明亮木 - 纳尔和非谐音的暗通道。明亮的状态对应于高反射率引导模式共振(GMR),而暗通道代表连续体(BIC)中的结合状态。即使在简单的系统中,具有可调带宽的奇异状态也是孤立的光谱线,这些频谱线与其他共振特征广泛分离。在适度的晶格调制下,随之而来的是泄漏的频段元数据,融合了模态频段并导致偏移黑色状态和反射性BIC,以及在高反射宽带内的跨媒介BIC。rytov-type有效培养基理论(EMT)被证明是描述,制定和理解共振光子系统中集体GMR/BIC基本面的有力手段。,此处显示了不对称场的废弃Rytov分析解决方案,以预测深色BIC状态基本上是针对相当大的调制水平的。等效EMT均匀膜的繁殖结构提供了对经常引用的嵌入BIC特征值的定量评估。作品以实验验证关键效应结束。