摘要。对 74 颗恒星进行了圆形光谱偏振观测,试图通过其光谱线中的纵向塞曼效应探测磁场。观测样本包括 22 颗正常 B、A 和 F 星、4 颗发射线 B 和 A 星、25 颗 Am 星、10 颗 HgMn 星、2 颗 λ Boo 星和 11 颗磁性 Ap 星。使用最小二乘反卷积多线分析方法(Donati 等人,1997 年),从每个光谱中提取了高精度斯托克斯 I 和 V 平均特征。我们完全没有发现正常、Am 和 HgMn 星中存在磁场的证据,纵向场测量的上限通常比以前为这些物体获得的任何值小得多。我们得出结论,如果这些恒星的光球层中存在任何磁场,这些磁场的排列顺序与磁性 Ap 恒星不同,也不类似于活跃的晚期恒星的磁场。我们还首次在 A2pSr 恒星 HD 108945 中检测到磁场,并对五颗先前已知的磁性 Ap 恒星的纵向磁场进行了新的精确测量,但没有在其他五颗被归类为 Ap SrCrEu 的恒星中检测到磁场。我们还报告了几个双星系统的新结果,包括 Am-δDel SB2 HD 110951 快速旋转次星的新 v sin i。
尽管我们习惯于谈论原子钟,但这些设备的起源可以追溯到核物理学的研究。在1924年,沃尔夫冈·保利(Wolfgang Pauli)指出,原子光谱线的某些分裂起源于核的磁矩与电子1之间的耦合。在1935年,亨德里克·卡西米尔(Hendrik Casimir)表明,当细胞核的电荷分布不是球上对称2时,电动相互作用会产生可比幅度的线分裂,但具有不同的光谱模式。基于这种超细结构的精确测量,原子过渡的光谱已成为有关核性质的信息的重要来源。Isidor Rabi组研究了与微波辐射3相互作用的原子梁。可以以极好的重现性记录一些共振,以至于Rabi在1945年提议将它们用于“最准确的时计” 4。这是剖腹时钟的开创性想法,它一直是时间的基础数十年5。尽管在20世纪下半叶,原子和核PHY SIC的领域朝着不同的方向扩展,但现在,一个新兴的话题正在两个领域之间在两个领域之间建立新的联系,而高度精确的时钟的概念再次起着中心作用。在约9.2 GHz处CS时钟的共振频率取决于133 CS核,价电子及其电磁相互作用的性质。在设计良好的时钟中,原子受到保护,免受其他明智地改变共振频率的外部扰动。近年来,在
微孔子Kerr光学频率梳或微梳是一组等距光谱线,它们是在泵送带有连续波谐振激光器的高Q谐振器后产生的。这些梳子近年来引起了强烈的研究兴趣,如参考文献中所述。1 - 5。典型的微栓生成平台是一个高Q分解器,它允许将长期的光子捕获在其曲折的特征模中,从而通过宿主介质的非线性相互作用。光学腔的特征是特征型的,这些特征是x''x r的准等式间隔,其中x r是谐振器的自由光谱范围,而整数eigennumber”代表了插入式光子的量化角动量('H'h'h'h'h'h'h'h = for Main Main Nabium rudius of Main Navius a)。当给定模式‘0用激光泵送时,可以将其视为参考很方便,以便使用还原的特征元素l¼'0'0来方便地标记特征模式。因此,微弹成分的目的是用谐振连续波激光泵送独特的模式l¼0,从而实现了有效的激发sidemodesl¼61; 6 2; …通过散装中等的Kerr非线性。在实验水平上,第一个演示涉及在整体窃窃私语模式模式谐振器中通过退化光子相互作用2 h x 0激发的高参数振荡!h xlÞHx l,其中两个频率x 0的泵光子向下 -
微孔子Kerr光学频率梳子或微梳是一组等距光谱线,它们是在泵送带有连续波谐振激光器的高Q谐振器后生成的。这些梳子近年来引起了强烈的研究兴趣,如参考文献中所述。1 - 5。典型的微栓生成平台是一个高Q分解器,它允许将长期的光子捕获在其曲折的特征模中,从而通过宿主介质的非线性相互作用。光学腔的特征是特征型的,这些特征是x''x r的准等式间隔,其中x r是谐振器的自由光谱范围,而整数eigennumber”代表了插入式光子的量化角动量('H'h'h'h'h'h'h'h = for Main Main Nabium rudius of Main Navius a)。当给定模式‘0用激光泵送时,可以将其视为参考很方便,以便使用还原的特征元素l¼'0'0来方便地标记特征模式。因此,微弹成分的目的是用谐振连续波激光泵送独特的模式l¼0,从而实现了有效的激发sidemodesl¼61; 6 2; …通过散装中等的Kerr非线性。在实验水平上,第一个演示涉及在整体窃窃私语模式模式谐振器中通过退化光子相互作用2 h x 0激发的高参数振荡!h xlÞHx l,其中两个频率x 0的泵光子向下 -
通讯员 原子(和分子)光谱中充满了信息,但遗憾的是,由于光谱线的精细结构通常无法解析,因此有些信息无法获取。因此,光谱学家不断努力提高光谱分辨率。然而,光谱分辨率的限制并不总是工具性的,而可能是原子组合所固有的。例如,由于气体原子的热运动,它们在光源传播方向上呈现出一系列速度。现在,如果 vo 是将原子从(尖锐)较低能态提升到(尖锐)较高能态所需的辐射频率(当原子相对于光源静止时),那么远离光源的原子每秒“看到”的波数(即频率)小于 vo。当然,远离光源的原子必须吸收它认为具有频率 vo 的辐射,因此相对于静止光源,该频率必须超过 vo。原子速度在源方向上的麦克斯韦-波尔兹曼分布确保了吸收频率的分布,即使每个原子都有尖锐的能级,即所谓的多普勒增宽。如果只选择相对于源的速度较窄的原子,使它们都以相同的频率吸收,则可以克服多普勒增宽。使用了几种速度选择技术,包括原子束和激光饱和光谱(参见《自然》,235,127;1972 年)。现在,两个研究小组分别描述了另一种处理多普勒增宽的优雅方法(Biraben、Cagnac 和 Grynberg,《物理评论快报》,23,643;1974 年;Levenson 和 Bloembergen,同上,645)。这些作者使用的技术的本质非常简单。这两个研究小组都研究了通常被禁止的 5S
在这次演讲中,阐明了Gottingen在制定量子力学中所起的核心作用。首先要简短的历史记录,对二十世纪的二十年来实现这一目标的早期步骤[1]。量子理论制定的第一步发生在1900年,马克斯·普朗克(Max Planck)通过将墙壁作为谐波振荡器的系统来解释黑体辐射的光谱。他假设发出和吸收的能量是Hν的整数倍数,其中ν是振荡器的频率,H是普朗克的常数,他使用热力学参数提前引入了Planck的常数。在1905年,阿尔伯特·爱因斯坦(Albert Einstein)假设存在光量子(仅在后来被称为光子)。这使他得出了光电效果的理论解释。卢瑟福(Rutherford)对金箔(1911)的α颗粒的散射实验提出了一种原子的行星模型,并具有沉重的带电核由电子表现出来。由于电子执行加速运动,它们会根据麦克斯韦的方程式辐射,因此这些原子在经典物理学的描述中不能稳定。这与提出的J.J.的李子布丁模型相反。汤姆森(Thomson)在1904年。在此模型中,假定电子在连续的正电荷背景和固定配置中自由频道,其中没有发射辐射[2]。该模型是由卢瑟福的实验伪造的。此假设导致离散的能量值e n w(n)= - e r /n 2 < /div> < /div>尽管这一事实是类似的“ Jellium模型”,但在固态物理学的后面引入了与模仿简单金属的特性。为了了解原子的稳定性并提出了高温下氢发出的光谱线的理论描述,NILS BOHR(1885-1962)在1913年推测,该电子不会辐射电子在integer of Integer of integer of integer of integer of integer fy的值中,该值不在integer of integul of integul上。
a b s t r a c t在冷的,深色的星际云条件下研究了两个密切相关的氰化物CH 3 [CN/NC]和H 2 C [CN/NC]的密切相关的异构体对。与空间中甲基氰化物(CH 3 CN)的不同检测相反,以前仅在温暖和热的恒星形成区域中观察到甲基异氰化物(CH 3 NC)。我们使用绿色银行望远镜的检测显着性约为13.4σ,报告了冷前核金牛座分子云(TMC-1)中CH 3 NC的检测。在H 2 CCN中的过度过渡和Ch 3 Cn和Ch 3 Nc中的四极相互作用与绿色库望远镜观测到的光谱线相匹配:狩猎芳香族分子的绿色储物望远镜上的大型项目捕食大型项目,导致了与1的含量相对于1的水。92 + 0。13-0。07×10 - 9对于氰基甲基自由基(H 2 CCN),5。02 + 3。08-2。06×10 - 10- 10-3 CN和2。 97 + 2。 10 - 1。 37×10-11 ch 3 nc。 在TMC-1条件下,在CH 3 CN和CH 3 NC的TMC-1条件下,将这些分子与三相气体密码Nautilus建模的努力,尽管在这些物种的观察值和模型之间,约5.9%的比率是一致的。 这可能指出模型中缺少破坏路线。 模型捕获了H 2 CCN的较大丰度。 解离重组被认为是这些分子的主要生产途径,并且发现具有丰富离子的反应是主要破坏途径。06×10 - 10- 10-3 CN和2。97 + 2。 10 - 1。 37×10-11 ch 3 nc。 在TMC-1条件下,在CH 3 CN和CH 3 NC的TMC-1条件下,将这些分子与三相气体密码Nautilus建模的努力,尽管在这些物种的观察值和模型之间,约5.9%的比率是一致的。 这可能指出模型中缺少破坏路线。 模型捕获了H 2 CCN的较大丰度。 解离重组被认为是这些分子的主要生产途径,并且发现具有丰富离子的反应是主要破坏途径。97 + 2。10 - 1。37×10-11 ch 3 nc。 在TMC-1条件下,在CH 3 CN和CH 3 NC的TMC-1条件下,将这些分子与三相气体密码Nautilus建模的努力,尽管在这些物种的观察值和模型之间,约5.9%的比率是一致的。 这可能指出模型中缺少破坏路线。 模型捕获了H 2 CCN的较大丰度。 解离重组被认为是这些分子的主要生产途径,并且发现具有丰富离子的反应是主要破坏途径。37×10-11 ch 3 nc。在TMC-1条件下,在CH 3 CN和CH 3 NC的TMC-1条件下,将这些分子与三相气体密码Nautilus建模的努力,尽管在这些物种的观察值和模型之间,约5.9%的比率是一致的。这可能指出模型中缺少破坏路线。模型捕获了H 2 CCN的较大丰度。解离重组被认为是这些分子的主要生产途径,并且发现具有丰富离子的反应是主要破坏途径。H + CH 3 NC以过渡状态理论为潜在的破坏途径进行了研究,但发现在冷云条件下太慢,无法解释CH 3 NC的建模和观察到的差异。