我们研究了光折变效应对用于连续变量片上实验的铌酸锂集成量子光子电路的影响。研究了电路的主要构建块,即腔体、定向耦合器和周期性极化非线性波导。这项工作表明,即使光折变效应弱于空间模式跳跃,它们也可能影响片上量子光子学实验的成功。我们详细描述了导致识别此可能问题的表征方法。我们还研究了设备加热在多大程度上代表了抵消此影响的可行解决方案。我们重点研究了 775 nm 光引起的光折变效应,背景是 1550 nm 电信波长的非经典光的产生。
2.1 (a) 垂直 MEMS 耦合器的 (a) 关闭状态和 (b) 开启状态示意图 - 图片取自 [14] (c) MEMS 开关单元的 SEM - 图片取自 [22] . . 7 2.2 MEMS 开关元件的代表性传递函数。 . . . . . . . . . . . . . 8 2.3 (a) 128x128 SiPh MEMS 纵横开关 (b) 4x4 CMOS 高压驱动芯片倒装芯片接合到 SiPh MEMS 芯片的 GDS 屏幕截图。 . . . . . . . . . . . . 9 2.4 (a) SuperSwitch 1 高压驱动芯片的显微照片 (b) 驱动芯片的卡通布局图。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.5 假设采用单个 CMOS 芯片,则激活 128 行中的 1 行的简单原理图。 . 11 2.6 假设采用 4x4 CMOS 芯片阵列,则控制 128x128 开关的原理图。 12 2.7 (a) N c = 1 时第 0 列和第 1 列的逻辑 (b) N c = 2 时第 0 列和第 1 列的逻辑。 13 2.8 (a) 带有用于调试的环回多路复用器的 SuperSwitch1 控制芯片扫描架构的最终原理图。 (b) SuperSwitch1 控制器芯片的最终参数。 . . . . . 14 2.9 (a) SuperSwitch1 高压驱动电路原理图。 (b) 所有电源及其标称值的列表。 . . . . . . ... 19 2.13 (a) HVDD = 70 V、HVSS = 65 V 时所有角的 VSS 电阻 shmoo 图。 (b) 相同图,但 HVDD = 70 V、HVSS = 66 V。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.16 (a) 凸块 CMOS 焊盘的显微照片。(b) Au UBM 和 Au 微凸块的横截面。(c) 使用不同厚度的 UBM 在 SiPh 芯片上补偿 CMOS 焊盘高度差异的键合工艺说明。. . . . . . . . . 22
摘要 在本文中,我们描述了 Apollo,据我们所知,这是世界上第一个用于数据中心网络的光电路交换机 (OCS) 的大规模生产部署。我们将首先描述促使数据中心内部进行光交换的基础设施挑战和用例。然后,我们深入研究数据中心应用对 OCS 的要求:平衡成本、端口数、交换时间和光学性能,这些要求推动了我们内部开发的基于 3D MEMS 的 OCS 的设计选择和实施细节。为了启用 Apollo 光交换层,我们使用循环器通过 OCS 实现双向链路,从而有效地将 OCS 基数加倍。OCS 和循环器的设计选择对于满足网络带宽、规模和成本目标至关重要。我们回顾了这些 OCS 和基于循环器的双向链路的 WDM 收发器技术的关键共同设计及其相应的物理缺陷,这些缺陷通过四代/速度的光互连实现。最后,我们总结了对硬件开发和相关应用未来方向的思考。