光射流。典型的光阳极,dibenzo [b,d]噻吩磺酸(FSO)单体,与额外的富含电子或电子decoient coenters共同聚合,即,苯烯,吡啶基,吡咯乙烯和四苯二苯,形成d - 一个基序。此外,制备了FSO的均聚物,发现水是水氧化的最高性能。随后,该FSO光阳极进一步用于氧化有机合成。我们能够将光阳极用于两个模型反应;特定的cally,通过氧化苯胺的氧化和通过甲基苯基硫DE的氧化和相应的选择性合成N-苯二烯苯甲酰胺的合成,并分别实现了高达92%和99%的选择性。进行了稳态和操作测量中的测量,以建立结构 - 聚商结构之间的性质关系及其在光阳性反应中的性能。在这些系统中,主动位点确定了这种转换的速率:通过测量结果,我们确定FSO光轴在其磺基群上积累光激发电荷有效,从而为氧化反应带来了最佳性能。这项工作是一项概念验证研究,用于采用成本效率的聚合物半导体通过常规合成来构建PEC系统。此外,它突出了设计聚合物结构的战略方法,从而改善了有机合成的太阳能转换以及选择性和产量。
搜索使用140 fb - 1在√𝑠= 13 = 13 TEV的proton-Proton碰撞中,搜索在辐射量激量激量仪中腐烂的中性长颗粒(LLP)。分析由三个通道组成。第一个目标配对生产的LLP,其中至少一个LLP的产生具有足够低的增强,以至于其衰减产物可以作为单独的喷气机解析。第二和第三通道的目标LLP分别与衰减衰变的𝑊或𝑍玻色子相关。在每个通道中,不同的搜索区域针对不同的运动学制度,以涵盖广泛的LLP质量假设和模型。没有观察到相对于背景预测的事件过多。higgs玻色子分支分支到成对的一对大于1%的强烈衰减中性LLP,在95%的置信度下排除在95%的置信度下,适当的衰减长度在30 cm至4.5 m的适当范围内,这取决于LLP质量,这取决于LLP质量,这是先前搜索的Hadronic Caloremeter搜索量的三个因素。与横截面高于0.1 pb的𝑍玻色子相关的长寿命深光子的产生被排除在20 cm至50 m的范围内的深色光子平均衰减长度,从而通过数量级提高了先前的Atlas结果。最后,Atlas首次对长期的光轴轴向粒子模型进行了探测,生产横截面高于0.1 Pb,在0.1 mm至10 m范围内排除了0.1 Pb。
,我们通过一种溶剂提取方法从天然染料源蓝莓中提取花色苷,用于在制造染料敏化太阳能电池(DSSC)中用作敏化剂。在提取花青素时,我们使用了乙腈,丁醇,乙醇和丙酮等溶剂,并检查了它们对DSSCS性能的影响。当前,可用的商业级二氧化钛(TIO 2)粉末由80 mol%金红石和20 mol%的解剖酶相组成。在准备光阳极的制备中,Tio 2粉末是通过医生刀片技术应用的。准备好的光轴浸入了提取的花青素染料中,并在整个过程中屏蔽了光线,并在不同的持续时间内暴露于不同的持续时间。为了制备电极,将大约1 nm厚的铂膜溅射到粘锡氧化物(ITO)玻璃底物上。最后,通过染料染色将涂层光射流用电极密封。为了评估制造的DSSC的性能,通过紫外线可见光谱(UV- VIS)和太阳能模拟器测量了入射光子到电子转换效率(IPCE)。结果表明,从丁醇中蓝莓提取的染料持续12小时的DSSC效率最高。在这项研究中,TERT叔丁醇是用于制造DSSC的最佳提取溶剂,从蓝莓中提取的花青素,效率为0.45%,填充系数为68.20%。需要进一步的研究才能找到一种更合适的溶剂和提取方法,而这项研究的结果证明,从天然染料来源(例如蓝莓在太阳能细胞技术中)使用染料是有希望的。
在未来几年中,用于科学目的的激光束将越来越多地用于天文望远镜。尽管望远镜站点附近的空中交通量通常极低,但必须解决同时发生的飞机意外照明风险(Wizinowich 等人1998)。正在建造一个用于近红外校正的自适应光学 (AO) 系统(Lloyd-Hart 等人1998),以部署在亚利桑那州南部霍普金斯山的一台新的 6.5 米望远镜(多镜面望远镜 (MMT) 转换)上(West 等人1997)。波前像差将通过参考沿望远镜光轴投射的 10 W 激光束产生的信标来测量(Jacobsen 等人1994)。激光调谐到原子钠的 D2 线,照亮中间层的钠原子。共振背散射光在望远镜上显示为人造“星”。旧的六镜配置中的 MMT 现已拆除,6.5 m 的施工正在快速进行,预计将于 1999 年秋季首次亮相。新的 AO 系统预计将在几个月后首次亮相。然而,在过去三年中,MMT 一直充当原型 AO 系统的试验台,包括一台 3 W 激光器(Ge 等人1998)。在此期间,我们制定了确保望远镜附近空中交通安全的程序。在激光活动开始前,通常会发布飞行员通知 (NOTAM)。激光从未指向 45° 天顶角以下。当预计或正在进行激光活动时,指定的激光安全官 (LSO) 必须始终在场,并且现场的专用电话线确保当地联邦航空管理局人员可以立即联系 LSO。最重要的是,我们开发了一种自动系统,旨在检测飞机并在任何潜在照明之前关闭激光。
高表面积半导体在电子和能量转换中具有多个应用。[1,2]虽然有规定的光伏设备将阳光直接转化为电力,而光化学(PEC)水分裂为利用这种可再生能源提供了替代途径。在PEC细胞中,水在催化金属氧化物界面处分解,以H 2(G)的形式存储化学能。理想的PEC细胞将具有较大的催化表面积,直接电子传输途径和最佳的阳光聚集。[3]多孔纳米结构的半控导管通过增加设备中吸收材料和光散射的量来满足这些要求。[4]然而,介孔无机3D网的制造能够控制几何和内部形态仍然是一个挑战。与传统使用的湿合成路线相比,原子层沉积(ALD)是一种广泛应用于现代电子产品的简单涂层方法。在ALD中,交替的反应物被沉积在基板上,限制了对其表面层的反应。因此,ALD可以用超高精度沉积薄膜。理想情况下,可以制备每一个ALD循环的薄膜,并且通常每循环的膜生长范围在0.01至0.3 nm之间。[5]可以通过简单地增加ALD循环的数量,以更长的沉积时间来制备较厚的层。基于纤维素的材料作为ALD模板具有吸引力,因为可以使用各种结构和表面化学材料。Kemell等。是第一个通过ALD在纤维素过滤纸上进行光催化应用的ALD模板2的模板。[6] Hyde等。在棉花斑块上表征了ALD涂层,涂上Al 2 O 3涂层来调整润湿性,以及Tino X涂层以促进细胞的粘附和生长。[7,8]对于需要孔隙率和高比表面积的应用,纳米纤维素气凝剂提供了一个具有层次 - 层次多孔结构的模板,其中可以在纳米孔中转移平均孔径到微米范围。[9,10],例如,Korhonen等。带有TIO 2的涂层纤维素纳米纤维(CNF)气凝胶,并证明了它们作为湿度传感器和油吸收剂的应用。[11]最近,Li等人。使用CNF Aerogels作为TIO 2的ALD模板,为水分拆分细胞制备毛细管光轴。[3]用毛细管湿润的电极
3.2.4.1 讨论 — 适用于 DED 的电弧工艺表面上基于气体保护工艺,即 GTA、PA、PTA 和 GMA 及其变体。3.2.5 建成状态,adj— 参见建成状态、ISO 52900 和 3.3。3.2.6 构建平台,n— 参见构建平台。ISO/ASTM 52900 3.2.6.1 讨论 — 在 ISO/ASTM 52900 中,机器的构建平台被定义为提供一个表面的底座,零件的构建在该表面之上,并在整个构建过程中受到支撑。在 DED 中,构建平台也可以是需要修复的组件,也可以是非平面的。3.2.7 捕获效率,n— 从沉积头喷出的粉末中融入构建结构的比例。通常以百分比表示。 3.2.8 载气,名词——通常为惰性气体,用于将粉末从沉积头运送到熔池,在某些系统中也用于辅助将粉末从储存系统运送到沉积头。 3.2.9 铸件,名词——一根金属线,松散地抛在地板上的一段金属线所形成的圆的直径。 3.2.10 包层,名词——参见包层,AWS A3.0/A3.0M。 3.2.11 横流,名词——通常为惰性气体,方向垂直于受保护镜头的光轴。 3.2.12 循环,名词——单个循环,其中一个或多个组件、特征或修理在机器的构建空间中分层构建。 ISO/ASTM 52900 3.2.12.1 讨论——DED 非常适合修理、特征添加和再制造应用。在本指南中,无论是构建完整部件、其一部分还是修复,术语“DED 构建循环”和“DED 沉积循环”的使用都是同义词。 3.2.13 缺陷,名词——参见缺陷,术语 E1316。 3.2.14 沉积头,名词——向熔池输送能量和原料的装置。 3.2.15 沉积速率,名词——参见沉积速率,AWS A3.0/A3.0M。 3.2.16 定向能量沉积 (DED),名词——参见 ISO/ASTM 52900 和 3.3。 3.2.17 进料,名词——将材料(线材或粉末形式)输送到熔池的机制。 3.2.18 填充金属,名词——参见填充金属,AWS A3.0/A3.0M。 3.2.19 裂纹,名词——参见裂纹,术语 E1316。 3.2.20 焦斑,名词——参见焦斑,AWS A3.0/A3.0M。 3.2.21 功能梯度材料,名词——在成分或结构(或二者)上随空间变化的沉积材料,导致材料性质的相应变化。 3.2.22 气体金属电弧(GMA),名词——参见气体金属电弧焊(GMAW),AWS A3.0/A3.0M。 3.2.22.1 讨论——AWS 定义中的“焊接”一词表示两块或多块材料的连接。由于 DED 不是这种情况,因此删除了“焊接”一词。其余术语描述电弧物理学。
