太空发展局(SDA)已采取措施开发激光通信技术,但尚未在太空中充分证明它。SDA计划将每2年推出卫星和相关系统的迭代,称为批量。SDA的示范批次(以0或T0的形式引用)面临着发展挑战和延误,并且尚未完全证明其预期的能力。例如,SDA计划在2022年推出第一个T0卫星,但于2023年和2024年推出。此外,这组最初的卫星尚未完全证明太空中的激光通信技术。特别是,截至2024年12月,SDA报告说,其T0中的四个主要承包商之一表明了八个计划的激光通信功能中的三个,而另一个承包商则证明了八个功能之一。其余两个承包商尚未获得任何计划的能力。
太空发展局(SDA)已采取措施开发激光通信技术,但尚未在太空中充分证明它。SDA计划将每2年推出卫星和相关系统的迭代,称为批量。SDA的示范批次(以0或T0的形式引用)面临着发展挑战和延误,并且尚未完全证明其预期的能力。例如,SDA计划在2022年推出第一个T0卫星,但于2023年和2024年推出。此外,这组最初的卫星尚未完全证明太空中的激光通信技术。特别是,截至2024年12月,SDA报告说,其T0中的四个主要承包商之一表明了八个计划的激光通信功能中的三个,而另一个承包商则证明了八个功能之一。其余两个承包商尚未获得任何计划的能力。
除了 LCRD 之外,ILLUMA-T 的前身还包括 2022 TeraByte 红外传输系统,该系统目前正在低地球轨道上的一颗小型立方体卫星上测试激光通信;月球激光通信演示,在 2014 年的月球大气和尘埃环境探测器任务期间将数据从月球轨道传输到地球并返回;以及 2017 年的激光通信科学光学有效载荷,它展示了与无线电信号相比,激光通信如何加速地球和太空之间的信息流。
尽管与近红外光通信中使用的光子器件相比,GaN microLED 器件的射频带宽相对较小,但它们能够缩小到 1 μ m 到 10 μ m 之间的非常小的间距,并且具有高亮度和在高温下工作的能力,这使它们成为短距离光通信的有趣器件。人工智能 (AI) 或高性能计算 (HPC) 等应用正在推动更高性能、更好能源效率和低延迟短距离互连的发展。事实上,据报道,15 AI 开发所需的硬件性能的扩展速度远远快于互连和内存数据速率。因此,芯片间或芯片内通信预计将成为 AI 技术进步的主要限制因素,这加强了人们对 GaN microLED 等新型短距离光互连的兴趣。我们介绍了 CEA-LETI 最近开展的工作,重点是开发短距离芯片到芯片光通信,如图 1 所示,使用 InGaN/GaN microLED 和微型光电二极管 (microPD)。这项工作利用了最初为微型显示器开发并适用于 200 毫米 ASIC 的外延、器件和集成工艺。在概述 microLED 在通信方面的预期优势并将其与替代技术进行比较后,我们将简要介绍一种集成工艺,该工艺旨在在控制 ASIC 上方组装密集的 microLED 矩阵。将重点介绍主要的性能指标,以评估
GSMA 是一家全球性组织,致力于统一移动生态系统,发现、开发和提供创新,为积极的商业环境和社会变革奠定基础。我们的愿景是释放连接的全部力量,使人们、行业和社会蓬勃发展。GSMA 代表整个移动生态系统和相关行业的移动运营商和组织,通过三大支柱为其成员提供服务:良好的连接、行业服务和解决方案以及外展。这些活动包括推进政策、应对当今最大的社会挑战、支持使移动发挥作用的技术和互操作性,并在 MWC 和 M360 系列活动中提供世界上最大的平台来召集移动生态系统。我们邀请您访问 gsma.com 了解更多信息
抽象的光纤网络正在迅速前进,以满足不断增长的交通需求。安全问题(包括攻击管理)对于光学通信网络而变得越来越重要,因为与光纤链接中的敲击光相关的漏洞。物理层安全性通常需要限制访问渠道的访问和链接性能的定期检查。在本文中,我们报告了如何利用量子通信技术来检测物理层攻击。我们提出了一种有效的方法,用于使用调制的连续变量量子信号来监视高数据速率经典光学通信网络的物理层安全性。我们描述了该监测系统的理论和实验基础以及不同监视参数的监视精度。我们分析了其启动和放大光链路的性能。该技术代表了将量子信号处理应用于实用的光学通信网络的一种新颖方法,并与经典监测方法进行了很好的比较。我们通过讨论其实际应用所面临的挑战,在现有量子密钥分布方法方面的差异以及在未来的安全光学运输网络计划中的使用情况。
《IEEE 量子电子学选题期刊》(JSTQE)邀请自由空间激光通信进展方面的论文投稿。自由空间激光通信这一新兴领域利用庞大的地面光纤行业以及最近大量廉价太空发射,成为解决太空星座交叉链路、高带宽数据下行链路和载人航天通信需求的现实解决方案。随着全球多个组织继续在该领域进行技术开发和系统设计创新,lasercom 有望在不久的将来继续彻底改变太空通信领域,为通信瓶颈以及系统尺寸、重量和功率限制提供独特的解决方案。《IEEE 量子电子学选题期刊》邀请自由空间激光通信领域的论文投稿。本期 JSTQE 旨在重点介绍开发尖端 lasercom 技术的最新进展和趋势。感兴趣的领域包括(但不限于):
• 采用新型光纤、设备、子系统和复用技术的光传输链路的实验室/现场演示 • 使用新型信号调制技术的链路系统演示 • 通过模拟和非线性信号处理子系统增强传输 • 用于改进传输的复用和解复用子系统 • 空间复用传输链路的演示 • 海底链路和电缆部署 • 新型传输系统建模方法 • 光传输系统的容量、范围和灵活性限制 • 物理损伤的系统级影响 • 损伤缓解技术 • 光通信的信息理论
随着空间数据流量的不断增加,空间光通信受到越来越多的关注,作为持续开发高速光学空间网络努力的一部分,尼康和JAXA一直在开发用于调制连续波信号的单横模10 W保偏Er/Yb共掺光纤(EYDF)放大器。我们已经完成了工程模型(EM)的开发,并计划在2024年作为国际空间站光通信系统的一部分演示该放大器。EM放大器具有三级反向泵浦结构,带有抗辐射的EYDF。它还包括泵浦激光二极管和功率监控光电二极管以避免寄生激光,这两者都已被证实具有足够的抗辐射能力,以及控制驱动电路。整体尺寸为300毫米×380毫米×76毫米,重6.3公斤。在标准温度和压力条件(STP:室温,1 个大气压)下,当信号输入为 -3 dBm 时,EM 放大器在总泵浦功率为 34 W 时实现了 10 W 的光输出功率。总电插效率达到 10.1%。在 STP 下,放大器在 10 W 下实现了 2000 小时的运行时间。我们进行了机械振动测试和工作热真空测试,以确保放大器作为太空组件的可靠性。在工作温度范围的上限和下限 ± 0 和 + 50 °C 下,输出功率和偏振消光比 (PER) 分别为 > 10 W 和 > 16 dB,而放大增益或 PER 没有任何下降。