肉类产品是人类饮食的重要组成部分,是营养的良好来源。食源性微生物是由于食用食物,尤其是动物起源产物而导致人类疾病的主要病原体。本研究的目的是验证胸腺氏胸腺精油对肺炎克雷伯氏菌的菌株的抗菌活性,铜绿假单胞菌和肉毒葡萄球菌与肉类产品分离出来的抗菌活性。为此,在微稀释板中进行了最小抑制浓度(MIC)和最小杀菌浓度(MBC)的分析。还使用磁盘扩散研究了产品与抗菌剂的关联。和抗粘附活性,在蔗糖存在下在玻璃管中确定。百里香油对K的抑制作用很强。肺炎,p。铜绿和s。saprophyticus,MIC值范围为64至512μg/ml,大多数菌株的杀菌作用范围为256至1,024μg/ml。t。寻常油与抗菌剂相关的相互作用各异,与协同(41.67%),冷漠(50%)和拮抗作用(8.33%)效应相关。关于抗粘附活性,测试产物可有效抑制所有正在研究的细菌菌株的依从性。因此,百里香油作为针对k的抗菌和抗依从剂的表现。肺炎,p。铜绿和s。saprophyticus是一种天然产品,可以代表对抗食源性疾病的有趣替代品。
a 南非医学研究委员会疫苗和传染病分析研究组,约翰内斯堡威特沃特斯兰德大学,南非 b 全球卫生部,比尔和梅琳达·盖茨基金会,美国华盛顿州西雅图 c KEMRI/威康信托研究计划,肯尼亚基利菲 d 英国牛津大学热带医学与全球卫生中心 e 英国伦敦大学圣乔治新生儿和儿科感染中心 f 瑞士巴塞尔巴塞尔大学儿童医院儿科研究中心 (PRC) g 阿姆斯特丹 UMC,阿姆斯特丹大学,神经病学系,阿姆斯特丹神经科学系,Meibergdreef,阿姆斯特丹,荷兰 h 阿姆斯特丹 UMC,阿姆斯特丹大学,儿科系,阿姆斯特丹神经科学系,Meibergdreef,阿姆斯特丹,荷兰 i 克罗伊登大学医院,英国伦敦 j 波士顿大学 CARB-X,美国马萨诸塞州波士顿 02215 k 马里兰大学医学院疫苗开发和全球卫生中心,美国马里兰州巴尔的摩 l 英国伦敦卫生与热带医学院传染病和热带病学院感染生物学系,伦敦 WC1E 7HT m 澳大利亚莫纳什大学中央临床学院传染病系,墨尔本,维多利亚 3004 n 马拉维-利物浦惠康计划儿科和儿童健康研究组,马拉维布兰太尔 o 英国伦敦卫生与热带医学院流行病学和人口健康学院传染病流行病学系,伦敦 WC1E 7HT p 乌干达坎帕拉马凯雷雷大学-约翰霍普金斯大学研究合作组织 q 美国俄亥俄州辛辛那提辛辛那提儿童医院医学中心和辛辛那提大学儿科传染病分部 r 印度韦洛尔基督教医学院临床微生物学系 s 同一个健康信托班加罗尔;普林斯顿大学,美国新泽西州普林斯顿 t 英国卫生安全局,英国波顿唐 u 世界卫生组织,瑞士日内瓦 v 意大利葛兰素史克全球健康疫苗研究所 w 乌干达坎帕拉上穆拉戈山路马凯雷雷大学健康科学学院医学院妇产科系 x 英国伦敦卫生与热带医学院卫生服务研究与政策系 y 瑞士日内瓦全球抗生素研究与发展伙伴关系 (GARDP) z 英国伦敦帝国理工学院医疗保健 NHS 信托基金儿科系 aa 英国卫生安全局病原体基因组学计划 ab 美国密苏里州圣路易斯华盛顿大学医学院儿科系和分子微生物学系 ac 加拿大不列颠哥伦比亚省温哥华儿童医院研究所疫苗评估中心 ad 加拿大不列颠哥伦比亚大学儿科系免疫接种,疫苗和生物制品,世界卫生组织,瑞士日内瓦
背景:心力衰竭病理生理学及其临床症状的特征是炎症。升高的白细胞亚群是炎症的众所周知的指标,在确定心血管疾病患者的预后中起着预测作用。此外,血小板是炎症的重要介质,尤其是当它们与白细胞相互作用时。血小板合成,激活和功能都受心力衰竭的影响。因此,该研究旨在确定心力衰竭患者的血小板,中性粒细胞和淋巴细胞异常的大小。方法:从2022年6月至2022年7月在贡达大学综合专业医院进行了回顾性横断面研究。总共包括245例心力衰竭患者的病历。从病历中收集了有关社会人口统计学,临床和一些血液学和生化参数的数据。数据已输入EPI-DATA 4.6.0.2,然后导出到Stata 11.0统计软件进行分析。计算出及其优势比的二元逻辑回归分析,以识别与结果变量相关的因素。p值<0.05被认为具有统计学意义。结果:心力衰竭成年人中最常见的白细胞异常是中性粒细胞,在17.55%(95%CI:13.26–22.87)中被发现。此外,在10.20%(95%CI:6.97–14.70)的患者中观察到淋巴细胞增多。只有女性与心力衰竭患者的嗜中性粒细胞显着相关(AOR = 2.33; 95%CI:1.05–5.16)。心力衰竭患者的血小板减少症和血小板病的大小为12.24%(95%CI:8.67–17.01%)和2.86%(95%CI:1.36-5.90%)。但是,这些变量均未与血小板和淋巴细胞异常显着相关。结论:心力衰竭患者的常见白细胞和血小板异常。因此,对这些异常的基本原因的早期检测和管理对于改善患者的结局并防止进一步的并发症可能很重要。关键词:心力衰竭,血小板,中性粒细胞,淋巴细胞,中性粒细胞,淋巴细胞增多,血小板减少症
固氮酶催化 N2 还原为铵 (1)。固氮酶由两种蛋白质组成,即二氮酶 (组分 I,Mo-Fe 蛋白) 和二氮酶还原酶 (组分 II,Fe 蛋白) (1, 3)。二氮酶含有一个独特的辅基,即铁钼辅因子 (FeMo-co),由 Fe、Mo 和 S (15) 组成。生化和遗传研究表明,至少有六种 nif (固氮) 基因产物参与了 FeMo-co 的生物合成。含有 nifB、nifN 或 nifE 突变的肺炎克雷伯菌菌株无法合成 FeMo-co (12, 15)。在含有低水平钼酸盐的培养基中,当固氮酶被解除抑制时,nifQ 突变的菌株不会合成 FeMo-co (8)。某些含有 nifH(编码二氮酶还原酶)突变的肺炎克雷伯菌和棕色固氮菌菌株无法积累 FeMo-co(2, 13)。从含有 nifV 突变的肺炎克雷伯菌菌株中分离出的二氮酶表现出改变的底物亲和力和抑制剂敏感性(10)。进一步的研究表明,NifV 突变体在 FeMo-co 合成方面存在缺陷(4)。最近,描述了一种体外合成 FeMo-co 的系统,该系统需要 ATP、钼酸盐、nifB、nifN 和 nifE 的基因产物(17)、二氮酶还原酶(未发表的数据)和同型柠檬酸(6)。肺炎克雷伯菌对同型柠檬酸的积累与功能性 nifV 基因的存在有关,该基因显然编码同型柠檬酸合酶(7)。在解除固氮酶抑制期间,发现高柠檬酸在肺炎克雷伯氏菌培养物培养基中积累 (6)。我们在此报告,向肺炎克雷伯氏菌 NifV 突变体培养基中添加高柠檬酸可治愈该表型。肺炎克雷伯氏菌 UN 是从菌株 M5al 中重新分离的野生型菌株,该菌株最初来自 PW Wilson 的收藏。菌株 UN1991 (nifV4945) 是一种稳定的 NifV 突变体,回复频率为 3 x 10-10(T. MacNeil,博士论文,威斯康星大学麦迪逊分校,1978 年),之前已有描述 (9)。肺炎克雷伯氏菌突变体中的生长和固氮酶解除抑制已被描述 (8)。从肺炎克雷伯菌 (6) 培养物的去阻遏培养基中分离出 (R)-2-羟基-1,2,4-丁烷三羧酸 (高柠檬酸)。将高柠檬酸添加到 UN1991 培养物中,最终浓度约为 83 mg * 升-' (0.4 mM)。用 DEAE-纤维素色谱法 (14) 从菌株 UN、UN1991 和 UN1991 中纯化二氮酶,这些菌株在高柠檬酸存在下已对固氮酶进行了去阻遏。已描述了乙炔和 N2 还原测定
• 环境中普遍存在(包括废水中) • 病原体(尿路感染、血流感染、肺炎等)(机会性或高毒性) • 全球最严重的 AMR 威胁之一(ESBL、碳青霉烯酶等)
背景:噬菌体疗法显示出治疗抗生素耐药性克雷伯菌感染的希望。识别噬菌体的噬菌体去聚合物酶,使毛发囊囊多糖获得至关重要,因为这些胶囊对生物膜形成和毒力构成了贡献。但是,基于同源的搜索在新型解聚酶发现中存在局限性。目标:开发用于识别和对针对克雷伯氏病的潜在噬菌体解放酶进行排名的机器学习模型。方法:我们开发了Deporanker,这是一种机器学习算法,以蛋白质的可能性为蛋白质。该模型在5种新表征的蛋白质上进行了实验验证,并与BLAST进行了比较。结果:驱动器在识别潜在的解聚酶时表现出较高的性能。实验验证证实了其对新蛋白质的预测能力。结论:Deporanker提供了一种准确且功能上的工具,可以加快对克雷伯氏菌的噬菌体疗法发现的去聚合酶发现。它可作为网络服务器和开源软件提供。可用性:WebServer:https://deporanker.dcs.warwick.ac.uk/源代码:https://github.com/wgrgwrgrght/deporanker
Chang 等,2012;Fazili 等,2016;Rossi 等,2018)。研究表明,赋予 hvKp 高毒力表型的最典型的毒力因子由位于毒力质粒上的基因编码,其中包括 iuc/iro(铁载体 aerobactin/salmochelin 的生物合成基因)、rmpA/rmpA2(增加荚膜产量的调节剂)和 peg-344(功能未知的代谢转运蛋白)(Russo and Marr,2019)。因此,大型毒力质粒上毒力基因的丢失将显著降低 hvKp 的毒力。尽管对hvKp毒力机制的研究已经取得了很大进展,但仍有许多问题尚未揭示:例如,毒力基因之间如何相互作用,它们如何调控hvKp的高毒力表型,以及毒力因子如何与宿主免疫系统相互作用。针对hvKp毒力质粒的有效基因编辑方法对于理解这些未知机制至关重要。目前,对hvKp毒力质粒进行基因敲除的报道很少,主要依赖于随机转座子插入和自杀质粒介导的同源重组(Cheng等,2010;
摘要 背景/目的:肺炎克雷伯菌在医疗器械上形成的生物膜会增加感染风险。菌毛和荚膜多糖 (CPS) 是参与生物膜形成的重要因素。据报道,肺炎克雷伯菌 NTUH-K2044 中的 KP1_4563 是一种含有 DUF1471 结构域的小蛋白,可抑制 3 型菌毛功能。在本研究中,我们旨在确定 KP1_4563 同源物在每个肺炎克雷伯菌分离株中是否保守,以及它在克雷伯菌生物膜中起什么作用。方法:比较了肺炎克雷伯菌 NTUH-K2044、CG43、MGH78578、KPPR1 和 STU1 的基因组。肺炎克雷伯菌 STU1 中的 KP1_4563 同源物被命名为 orfX。对来自肺炎克雷伯菌 STU1 和一个临床分离株 83535 的野生型和 orfX 突变菌株的生物膜进行了量化。通过 RT-qPCR 研究了 3 型菌毛基因 mrkA 和 mrkH 的转录水平。通过蛋白质印迹法观察野生型和 orfX 突变体的 MrkA。通过透射电子显微镜 (TEM) 观察细菌细胞的形态。对细菌 CPS 进行了量化。结果:orfX 的基因和上游区域在五种肺炎克雷伯菌分离株中是保守的。orfX 的缺失增强了克雷伯菌生物膜的形成。然而,野生型和 orfX 突变体之间 mrkA 和 mrkH 的 mRNA 量以及 MrkA 蛋白的水平没有差异。相反,orfX 突变体中的 CPS 量增加,
于2023年11月23日收到; 2024年3月7日接受;于2024年3月26日发表作者分支:1生物学与生物技术系,意大利帕维亚大学,意大利帕维亚大学; 2 MRC全球传染病分析中心,英国伦敦帝国学院; 3英国欣克斯顿的欧洲生物信息学研究所欧洲分子生物学实验室; 4 Microbiology和病毒学单元,Fondazione Irccs Policlinico San Matteo,意大利帕维亚; 5英国巴斯大学生命科学系米尔纳进化中心; 6 Fondazione Irccs Policlinico San Matteo,意大利帕维亚。*信函:John A. Lees,Jlees@ebi。Ac。UKUK关键字:AMR;抗生素抗性;细菌基因组学; gwas;肺炎;机器学习;麦克风缩写:AMR,抗菌耐药性; BACC,平衡精度; CI,一致性指数; CPFX,环丙沙星; ES,效果大小; fn,假否定; Gen,庆大霉素; GTR,一般时间可逆; GWAS,基因组广泛的关联研究; LD,连锁不平衡; MAF,次要等位基因频率; MEM,MeropeNem; MIC,最小抑制浓度; SNP,单核苷酸多态性; TP,真正的积极; TZP,哌拉西林/tazobactam; WGS,整个基因组测序。数据语句:文章或通过补充数据文件中提供了所有支持数据,代码和协议。本文的在线版本可以使用二十四个支持数据和一个补充表。001222©2024作者