摘要。本文研究了数字图像相关 (DIC) 和有限元分析在印刷电路板 (PCB) 应变测量中的应用。电路板 (PCB) 旨在机械支撑和电连接电子元件组件。由于螺钉组件、放置 PCB 的表面水平差异、组装电子元件的过程会在 PCB 中引起一定的应力和变形状态。受影响的主要组件是微处理器,因为它们是用 BGA - 球栅阵列 (BGA) 粘合到 PCB 上的。数字图像相关 (DIC) 是一种全场非接触式光学方法,用于测量实验测试中的位移和应变,基于测试期间拍摄的图像的相关性。实验装置采用 Dantec Q-400 系统(用于图像捕获)和 Istra 4D 软件(用于图像相关和数据分析)实现。将获得的应变的最大水平与允许极限进行比较。有限元分析 (FEA) 是一种数值分析方法,用于分析任何给定几何结构中的应力和应变。关键词:数字图像相关;有限元分析;PCB;应变。
我们研究了用于航空航天应用的不同纤维取向的单向增强碳-碳复合材料的疲劳开裂行为。通过数字图像相关 (DIC),现场记录全场位移,捕捉循环载荷过程中应变局部化的演变。DIC 位移场进一步用于通过正交各向异性本构关系的回归分析确定裂纹驱动力。显微计算机断层扫描 (micro-CT) 扫描揭示了损伤微观机制的竞争性质,例如孔隙聚结、纤维桥接等,用于推进裂纹。断裂表面的电子显微镜检查揭示了广泛的纤维/基质界面脱粘和纤维拔出,这主要是对抗循环开裂的影响。在足够的进展后,除非施加的载荷进一步增加,否则循环裂纹扩展本质上是自停止的。这种行为的起源归因于:(a)由于复合材料弹性模量不断下降导致驱动力降低;(b)由于尾流中普遍的纤维桥接和拉出导致的阻力牵引导致损伤阻抗增强。
测量原理一个随机模式被应用于测试对象的表面。该图案可以用白色的基颜色喷洒,并在顶部撒上黑色。用两个高速传感器观察到表面。首先测量轮廓,然后使用特定模式匹配算法鉴定随机结构的每个捕获的图像同源点。每个对象点的三维位置由软件执行的三角剖分确定。如果在对象的位移过程中记录了图像序列,则自动计算每个对象点的变形。动态测量范围系统独特地结合了全场光学测量和高节奏分辨率的高空间分辨。动态范围从静态到超过20.000 Hz,其能力从µm范围到几个10 cm的位移。分辨率对应于视场的10-5,例如用于A4纸尺寸测量区域的几µm。菌株范围从100 µScrains不等到数百分之100%。
贝鲁特:黎巴嫩议会星期四选举陆军首席约瑟夫·奥恩为总统,此举旨在帮助这个饱受战争蹂躏的国家摆脱金融危机。奥恩将于星期五迎来 61 岁生日。他在议会宣誓就职,受到了全场热烈的掌声。他身着深色西装和蓝色领带,而非平常的军装。他对议会表示:“今天,黎巴嫩历史的新阶段开始了。”埃米尔谢赫马沙尔·艾哈迈德·贾比尔·萨巴赫殿下星期四向奥恩致以诚挚的祝贺,衷心祝贺他当选总统,祝愿他为国家利益和稳定服务,并实现国家增长、进步和繁荣的愿望。阿米尔殿下高度评价科威特国与姐妹国家黎巴嫩共和国之间历史悠久、关系密切的关系,表示希望进一步巩固两国关系,促进两国在各领域的合作。他希望科威特共和国及其人民进一步发展壮大,并祝愿新总统身体健康、万事如意。
摘要:深度学习 (DL) 算法在无损评估 (NDE) 中的应用正成为该领域最有吸引力的主题之一。作为对此类研究的贡献,本研究旨在研究 DL 算法在使用激光超声技术检测和评估螺栓接头松动度方面的应用。本研究基于关于螺栓头板真实接触面积与超声波穿过时损失的导波能量之间关系的假设进行。首先,分别使用 Q 开关 Nd:YAG 脉冲激光器和声发射传感器作为激励和感应超声信号。然后,使用超声波传播成像 (UWPI) 过程创建 3D 全场超声数据集,之后应用多种信号处理技术来生成处理后的数据。通过使用基于 VGG 类架构的回归模型的深度卷积神经网络 (DCNN),计算估计误差以比较 DCNN 在不同处理数据集上的性能。还将所提出的方法与 K 最近邻、支持向量回归和深度人工神经网络进行了比较,以证明其稳健性。因此,发现所提出的方法显示出结合激光生成的超声波和 DL 算法的潜力。此外,信号处理技术已被证明对自动松动估计的 DL 性能具有重要影响。
我们提出了一种自适应物理学的深层均质化神经网络(DHN)方法,以制定具有不同微结构的弹性和热弹性周期性阵列的全场微力学模型。通过完全连接的多层连接的单位细胞溶液通过最大程度地限制根据应力平衡和热传导部分微分方程(PDE)的残差之和,以及无界面的无牵引力或绝热边界条件。相比,通过引入具有正弦函数的网络层直接满足周期性边界条件。完全可训练的权重施加在所有搭配点上,这些搭配点与网络权重同时训练。因此,网络会在损耗函数中自动为界面附近(尤其是单位细胞解决方案的具有挑战性的区域)中的搭配点分配更高的权重。这迫使神经网络在这些特定点上提高其性能。针对有限元素和弹性解决方案的自适应DHN的精度分别用于椭圆形和圆柱孔/纤维的弹性解决方案。自适应DHN比原始DHN技术的优点是通过考虑局部不规则的多孔架构来证明合理的,孔隙 - 孔相互作用使训练网络特别缓慢且难以优化。
2D数字乳房摄影中微钙化(MC)的抽象准确表征是降低与不确定MC的回调相关的诊断不确定性的必要步骤。MC的定量分析可以更好地识别导管癌或浸润性癌的可能性较高的MC。 但是,MC的自动识别和分割,具有高误报率仍然具有挑战性。 我们提出了2D全场数字乳房X线照片(FFDMS)和诊断放大视图的两阶段多尺度方法。 候选对象首先是使用斑点检测和黑森州分析来划定的。 回归卷积网络,经过训练,可以在MC附近输出具有较高响应的功能,选择构成实际MC的对象。 该方法经过培训并在两个单独的数据集中对435个筛选和诊断FFDM进行了验证。 然后,我们使用我们的方法对248例无定形MC的射击视图进行细分MC。 我们使用梯度树的提升对提取的特征进行建模,以将每种情况分类为良性或恶性肿瘤。 与最新的比较方法相比,我们的方法比联合的均值相交(每图像为0.670±0.121,而每图像0.524±0.034),每个MC对象的交点比每个MC对象(0.607±0.250)(0.607±0.250 ves 0.363±0.278)和0.581 persection persect persect persect persion persion versions 0.581 vers versutions 0.581 vers versus vers versus versus versus versus。 使用我们的方法生成的特征优于比较方法(0.763对0.710 AUC),将无定形钙化为良性或恶性肿瘤。可以更好地识别导管癌或浸润性癌的可能性较高的MC。但是,MC的自动识别和分割,具有高误报率仍然具有挑战性。我们提出了2D全场数字乳房X线照片(FFDMS)和诊断放大视图的两阶段多尺度方法。候选对象首先是使用斑点检测和黑森州分析来划定的。回归卷积网络,经过训练,可以在MC附近输出具有较高响应的功能,选择构成实际MC的对象。该方法经过培训并在两个单独的数据集中对435个筛选和诊断FFDM进行了验证。然后,我们使用我们的方法对248例无定形MC的射击视图进行细分MC。我们使用梯度树的提升对提取的特征进行建模,以将每种情况分类为良性或恶性肿瘤。与最新的比较方法相比,我们的方法比联合的均值相交(每图像为0.670±0.121,而每图像0.524±0.034),每个MC对象的交点比每个MC对象(0.607±0.250)(0.607±0.250 ves 0.363±0.278)和0.581 persection persect persect persect persion persion versions 0.581 vers versutions 0.581 vers versus vers versus versus versus versus。使用我们的方法生成的特征优于比较方法(0.763对0.710 AUC),将无定形钙化为良性或恶性肿瘤。
超快泵和探针脉冲的时间分辨光发射是一种具有广泛应用潜力的新兴技术。实时记录非平衡电子过程,化学反应中的瞬态状态或电子和结构动力学的相互作用为未来的研究提供了有趣的机会。将价值波段和核心水平光谱与用于电子,化学和结构分析的光电子衍射相结合,需要少数10 fs的软X射线脉冲,其中大约10 MeV光谱分辨率,目前可在高复兴速率的频率射击器激光器下可用。我们已经构建并优化了在Flash/pg2上委托使用的多功能设置,该设置将自由电子激光功能和用于光发射研究的多维录制方案结合在一起。我们使用带有飞行时间记录的全场成像动量显微镜作为以空前效率(k x,k y,e)参数空间(k x,k y,e)映射的检测器。我们的仪器可以在几个EV的结合能量范围内成像最多7Å-1直径的全表面布里渊区,同时解决约2.5×10 5数据素体。在36.5 eV和109.5 eV的光子能量下测量的范德华半导体WSE 2中使用超快激发态动力学
光声 (PA) 成像是一种新兴的混合成像技术,可以在增加穿透深度的情况下以高特异性和微米级分辨率非侵入性地识别组织。它采用脉冲激光作为激发源,并收集超声波响应以重建光吸收图,以反映组织区域的结构和功能细节。根据激发光和接收声音的排列方式,光声成像可以是多尺度的,从人体器官和小动物全身到单细胞等微观精细结构。PA 成像的血管特异性允许神经血管耦合神经电压成像,但迄今为止大多数工作都是通过血管和血氧波动而不是直接测量来询问神经元电压活动。在这里,我们提出了一种新颖的策略,该策略采用全场光声脑检测平台,该平台配有光稳定的电压敏感染料,可直接监测完整的癫痫小鼠脑中长时间的电压动态。通过研究大脑区域之间的连通性,可以揭示电传导通路及其方向性,这些方向性通过快速时间可视化来指示。所提供的证据突出了所提出的方法对癫痫和其他电压相关疾病的诊断和映射的潜力。
纳米级的光 - 物质相互作用的精确控制位于纳米光子学的核心。但是,由于相应的电磁近场通常限制在传统光学显微镜分辨率以下的体积之内,因此在此长度尺度上进行的实验检查是具有挑战性的。在半导体纳米型电磁场中进一步限制在各个亚波长谐振器的范围内,从而限制了这些结构中关键光 - 物质相互作用的访问。在这项工作中,我们证明了光电子发射显微镜(PEEM)可用于分辨近场光谱的极化以及受损坏对称性硅元素支撑的电磁共振的成像。我们发现,通过原位钾表面层启用的光发射结果与可见和近红外波长之间的全波模拟和远场反射测量一致。此外,我们发现了跨场阵列边缘附近的集体共振的偏振相关演变,利用了PEEM的远场激发和全场成像。在这里,我们推断出八个谐振器或更多之间的耦合建立了此元图的集体激发。总而言之,我们证明了高光谱的高光谱成像和PEEM的远场照明可以利用半导体纳米光子结构中的集体,非本地,光学共振的计量学。