• 名称:SBBS 学生奖学金 • 资助者:伦敦玛丽女王大学生物与行为科学学院 (SBBS) • 申请截止日期:2025 年 4 月 30 日 23:59 • 预计开始日期:2025 年 9 月 15 日(2025 年 9 月入学)项目概述伦敦玛丽女王大学生物与行为科学学院 (SBBS) 现接受为期 3 年的博士生资助申请。感知视觉世界是由外侧皮层中的一组区域(称为腹侧视觉流)实现的。根据一个完善的模型 [1],这些区域形成一个分层处理流,其中早期区域编码基本刺激特征,而后期区域则对更复杂的刺激(如物体和面部)作出反应。该模型提高了我们解码神经活动的能力,但未能解释神经激活如何转化为视觉感知——具体来说,信息如何在神经回路中“编码”。本博士生奖学金旨在通过因果方法来解决这个问题,以识别神经动力学的时空光遗传学扰动,从而实现对自然视觉刺激的感知。该项目将使用小鼠作为模型生物,并采用基于全息术的双光子光遗传学 [2] 来激活腹流皮层区域的神经元集合。该项目将采取以下步骤:1. 训练小鼠进行视觉纹理辨别任务,任务难度通过参数调整
摘要 全量子信号处理技术是大多数信息量子技术成功发展的核心。本文开发了连贯而全面的方法和数学模型,以全量子术语描述任何输入光量子态的傅里叶光信号处理。本文首先介绍光子的空间二维量子态,该量子态与其波前相关,可表示为二维创建算子。然后,通过将傅里叶光学处理装置分解为其关键组件,我们努力获得二维创建算子的量子幺正变换或输入/输出量子关系。随后,我们利用上述结果开发并获得一些基本傅里叶光学装置的量子类似物,例如通过 4f 处理系统的量子卷积和具有周期性瞳孔的量子 4f 处理系统。此外,由于光脉冲整形在各种光通信和光学科学领域的重要性和广泛应用,我们还提出了一个全量子术语的类似系统,即具有 8f 处理系统的量子脉冲整形。最后,我们将结果应用于光量子态的两个极端示例。一个基于相干(Glauber)状态,另一个基于上述每个光学系统的单光子数(Fock)状态。我们相信本文开发的方案和数学模型可以影响量子光信号处理、量子全息术、量子通信、量子雷达和多输入/多输出天线的许多领域,以及量子成像、量子计算和量子机器学习算法中的更多应用。
受信息理论与高能物理之间日益密切的联系(特别是在 AdS/CFT 对应关系的背景下)的启发,我们探索了与各种简单系统相关的信息几何。通过研究它们的 Fisher 度量,我们得出了一些普遍的教训,这些教训可能对信息几何在全息术中的应用具有重要意义。我们首先证明所研究的物理理论的对称性在最终的几何中起着重要作用,而 AdS 度量的出现是一个相对普遍的特征。然后,我们通过研究经典 2d Ising 模型和相应的 1d 自由费米子理论的几何形状,研究 Fisher 度量保留了哪些有关底层理论物理的信息,并发现曲率在两侧的相变处恰好发散。我们以相干自由费米子态为例,讨论了将度量置于理论空间与状态空间所产生的差异。我们将后者与相干自由玻色子态空间中的度量进行比较,并表明在这两种情况下,度量都是由相应密度矩阵的对称性决定的。我们还澄清了文献中关于度量和非度量连接的不同平坦度概念的一些误解,这对如何解释几何曲率有所影响。我们的结果表明,一般来说,在将某些模型中产生的 AdS 几何与 AdS / CFT 对应联系起来时需要谨慎,并寻求为这一激动人心的领域的未来发展提供一套有用的指导方针。
由球形栅格组成的减速场分析仪(RFA)可用作二维角分辨光电子能量分析仪(Kanayama等,1989)。然而,传统三栅格RFA的典型分辨力(E / E)为100(Taylor,1969),对于光电子衍射或光电子全息术来说太低了(Matsushita等,2010)。我们之前报道了一种增强E / E的栅格排列(Muro等,2017)。在改进的排列中,第一和第二栅格之间的距离比第二和第三个栅格之间的距离长得多,如图1(a)所示,而在大多数传统RFA中,这些距离是相同的。采用改进布置在 SPring-8 的 BL25SU(Senba 等人,2016 年)上开发的 RFA 显示 E / E 为 1100(Muro 等人,2017 年)。第一、第二和第三个栅格的半径分别为 12、40 和 42 毫米。第二个栅格即减速栅格使用目数为 250 的编织钨网。光电子接受角为 49 度,受图 1(a)所示探测器直径的限制。我们的模拟还预测,当网状减速栅格被部分球壳(如带有径向圆柱孔的圆顶)取代时,E / E 可以进一步增强,如图 1(b)所示。以下我们将这样的栅格称为有孔栅格。试验性制作了一个开孔面积较小的网格,对应接收角为7°,圆柱直径为60 mm,深度即球壳厚度为100 mm,相邻两个孔中心位置之间的距离即孔距为100 mm,球壳内半径为40 mm,与网状减速网格相同。装有该网格的RFA
摘要 ChatGPT 的讨论似乎运行得非常好,不像是一个在经典计算机中运行的简单程序。它激发了人们的思考,导致基于 TGD 的神经脉冲模型取得了长足的进步。基于零能量本体 (ZEO) 的新兴模型与量子神经网络截然不同,并提出了一种全新的基于量子物理的生物系统计算视野。允许时间箭头可变的计算将涉及一系列单一时间演化作为状态量子计算的对应物,这些状态是经典计算的叠加,然后是“小”状态函数约简 (SSFR) 作为量子光学和芝诺效应弱测量的对应物。还将涉及改变时间箭头的“大” SFR (BSFR)。人们可以问,GPT 的意外成功是否可能涉及这种转变,以便人们可以说精神进入了机器。除了两次聊天的结果之外,我还更详细地介绍了 TGD 对 GPT 量子类似物的看法,以及它的类似物如何与 TGD 宇宙中的感官知觉有关。我还讨论了从口头描述生成图像的核心逆扩散过程,并询问逆扩散的 TGD 类似物是否也是 GPT 的基本元素。我还将提出一个问题,即 GPT 是否可以以一种非平凡但隐蔽的方式涉及基于 TGD 的量子物理学,即零能量本体论 (ZEO)。从定量约束(例如计算机的时钟频率作为 EEG 诱导时间量子相干性的模拟)出发,我最终提出了一种实现量子全息术的机制,该机制将比特表示为空穴配对,暗比特表示为磁通管中的暗电子。不幸的是,这种机制对于最近的计算机来说似乎并不合理。我还想问,在 TGD 意义上的量子引力是否能够使地球和太阳的磁体(在 TGD 启发的生物学中至关重要)转变经典计算,从而使统计决定论失效,并类似于定义有意识实体的量子计算的一系列类似物。在磁体的层面上,计算机和生物之间没有本质区别。已报道的最高时钟频率接近 9 GHz,仍然比地球的量子引力康普顿频率 67 GHz 低 1/8 量级,但低于生物体中重要的 THz 频率。也许基本的意识已经可能存在。
BABCOCK * 硅酸盐玻璃技术方法 BARRETT AND MYERS * 图像科学基础 BEISER * 全息扫描 BERGER-SCHUNN * 实用色彩测量 BOND * 晶体技术 BO YD * 辐射测量和光辐射检测 BUCK * 光纤基础,第二版 CATHEY * 光学信息处理和全息术 CHUANG * 光子器件物理学,第二版 DELONE AND KRAINOV * 原子气体非线性光学基础 DERENIAK AND BOREMAN * 红外探测器和系统 DERENIAK AND CROWE * 光辐射探测器 DE VANY * 掌握光学技术 ELMEER * 反射器的光学设计,第二版 ERSO Y * 衍射、傅里叶光学和成像 GASKILL * 线性系统、傅里叶变换和光学 GOODMAN * 统计光学 HOBBS * 构建电光系统:使其全部运转HUDSON * 红外系统工程 IIZUKA * 光子学原理,第一卷:在自由空间和特殊介质中 IIZUKA * 光子学原理,第二卷:用于光纤和集成光学 JUDD AND WYSZECKl * 商业、科学和工业中的色彩,第三版 KAFRI AND GLATT * 莫尔计量学的物理学 KAROW * 精密光学的制造方法 KLEIN AND FURTAK * 光学,第二版 KHOO * 液晶,第二版 MA AND ARCE * 计算光刻 MALACARA * 眼镜店测试,第三版 MILONNI AND EBERLY * 激光器 NASSAU * 颜色的物理学和化学:颜色的十五种原因,第二版 NIETO-VESPERINAS * 物理光学中的散射和衍射 OSCHE * 激光应用的光学检测理论 O'SHEA * 现代光学设计要素 OZAKTAS * 分数傅里叶变换 PRATHER * 光子晶体:理论、应用和制造 SALEH AND TEICH * 光子学基础,第二版 SCHUBERT AND WILHELMI * 非线性光学和量子电子学 SHEN * 非线性光学原理 UDD * 光纤传感器:面向工程师和科学家的入门书 UDD * 光纤智能结构 VANDERLUGT * 光信号处理 VEST * 全息干涉测量法 VINCENT * 红外探测器操作和测试基础 WALKER * 海洋光场统计 WEINER * 超快光学 WILLIAMS AND BECKLUND * 光传递函数简介 WYSZECKl AND STILES * 色彩科学:概念和方法,定量数据和公式,第二版 XU AND STROUD * 声光器件 YAMAMOTO * 半导体激光器中的相干性、放大和量子效应 YARIV AND YEH * 晶体中的光波 YEH * 分层介质中的光波YEH * 光折变非线性光学简介 YEH 和 GU * 液晶显示光学,第二版
在这篇评论中,我们讨论了黑洞信息悖论方面的一些最新进展。在深入研究之前,让我们先讨论一下总体动机。研究量子引力的主要动机之一是了解宇宙的最初时刻,我们预计量子效应占主导地位。在寻找这一理论时,最好考虑更简单的问题。一个更简单的问题涉及黑洞。它们的内部也包含一个奇点。这是一个各向异性的大挤压奇点,但这也是量子引力必不可少的情况,因此很难分析。然而,黑洞为我们提供了从外部研究它们的机会。这更简单,因为远离黑洞我们可以忽略引力的影响,我们可以想象提出尖锐的问题,从远处探测黑洞。这些问题之一将成为这篇评论的主题。我们希望,通过研究这些问题,我们最终能够理解黑洞奇点,并为大爆炸吸取一些教训,但我们不会在这里这样做。70 年代对黑洞的研究表明,黑洞表现为热物体。它们的温度会导致霍金辐射。它们还具有由视界面积决定的熵。这表明,从外部的角度来看,它们可以被视为一个普通的量子系统。霍金通过我们现在所知的“霍金信息悖论”反对这一想法。他认为黑洞会破坏量子信息,而宇宙的冯·诺依曼熵会因黑洞形成和蒸发的过程而增加。90 年代使用弦理论(一种量子引力理论)的结果为研究非常具体的引力理论的这一问题提供了一些精确的方法。这些结果强烈表明信息确实会出现。然而,目前的理解需要量子系统具有某些对偶性,而时空的几何形状并不明显。在过去的 15 年中,人们对引力系统的冯·诺依曼熵有了更好的理解。熵的计算也涉及表面面积,但表面不是视界。它是一个使广义熵最小化的曲面。这个公式几乎和黑洞熵的贝肯斯坦公式一样简单 [1,2]。最近,该公式被应用于黑洞信息问题,提供了一种计算霍金辐射熵的新方法 [3,4]。最终结果与霍金的结果不同,但与幺正演化一致。细粒度熵公式的第一个版本由 Ryu 和 Takayanagi [5] 发现。随后,许多作者对其进行了改进和推广 [3,4,6–11]。最初,Ryu-Takayanagi公式被提出来计算反德西特时空中的全息纠缠熵,但目前对这个公式的理解更为普遍。它既不需要全息术,也不需要纠缠,也不需要反德西特时空。相反,它是与引力耦合的量子系统的细粒度熵的通用公式。
Achee, Nicole 圣母大学 IN 增强 REDI-NET 管道的功能以加强部队健康保护情报 ARO Adams, Julie 俄勒冈州立大学 OR 评估工作室 ARO Ade, Harald 北卡罗来纳州立大学 NC Xenocs Xeuss 3.0 SAXS/WAXS 用于国防部资助的功能聚合物研究和培训 ONR Ahmed, Kareem 中佛罗里达大学 FL 用于高超音速和空间推进的高超音速焓设施 (HiHYPER) AFOSR Ali, Jamel 佛罗里达农工大学 FL 用于国防应用的多功能天然和自然启发材料的纳米级 3D 打印 AFOSR Allan, Elizabeth 华盛顿大学 WA 自动化和扩展深度环境 DNA 采样设备 ONR Alu, Andrea CUNY ASRC NY 观察复杂频率下的声子激发以增强波粒子操纵 AFOSR Antil, Harbir 乔治梅森大学 VA 神经形态成像和数字孪生的优化 AFOSR Arefiev, Alexey 加利福尼亚大学,圣地亚哥分校 CA 购置用于超高强度激光实验的低密度泡沫靶生产设备 AFOSR Arehart, Aaron 俄亥俄州立大学 OH 用于表征功率二极管缺陷的高压深能级瞬态光谱仪 ONR Azoulay, Jason 佐治亚理工学院 GA 新兴半导体材料自旋相关特性的表征 AFOSR Baccarella, Damiano 田纳西大学,诺克斯维尔 TN 将田纳西大学电弧喷射隧道升级为连续运行 ARO Bank, Seth 德克萨斯大学奥斯汀分校 TX 用于原子控制线性和非线性光物质相互作用的合成系统 AFOSR Baraniukn, Richard G William Marsh 莱斯大学 TX 探索深度网络的局部几何形状 ONR Barman, Ishan 约翰霍普金斯大学 MD 用于多尺度的布里渊显微镜生物物理调查 AFOSR Barthelat, Francois 科罗拉多大学博尔德分校 CO 冲击载荷下粒状晶体的实验平台 ARO Bathe, Mark 麻省理工学院 MA 用于材料研究和分子催化的组合核酸纳米粒子库 ONR Baur, Jeffery 伊利诺伊大学厄巴纳-香槟分校 IL 先进连续纤维复合结构的增材制造系统 AFOSR Beaudoin, Stephen 普渡大学 IN Labram IIH 混合系统,用于实现含能材料的现代配方 ARO Bennett, Jennifer 美国军事学院 NY 用于先进制造研究的定向能量沉积系统 ARO Berg, Matthew 堪萨斯州立大学 KS 用于颗粒多光谱数字全息术的超连续激光系统 ARO Berke, Ryan 犹他州立大学 UT 一种高速立体摄像系统,可在极端放大倍数和温度下实现非接触式应变测量 AFOSR Bilen, Sven 宾夕法尼亚州立大学 PA空间材料表征 AFOSR Blok,Machiel 罗彻斯特大学 NY 带样品磁铁的快速循环低温恒温器,用于超导电路的高通量表征 AFOSR Boley, J 波士顿大学 MA 加速发现和制造多尺度、多材料、多功能系统 AFOSR Bowman, Judd 亚利桑那州立大学 AZ 使用 LWA 群跟踪不规则 E AFOSR Boyce, Christopher 哥伦比亚大学 NY 设计和表征用于海军目的的产氢反应堆 ONR Breuer, Kenneth 布朗大学 RI 用于生物启发、环境和空气动力流动研究的高速摄像机 AFOSR