从脑电信号进行语音解码是一项具有挑战性的任务,其中大脑活动被建模以估计声学刺激的显著特征。我们提出了 FESDE,一种从脑电信号进行完全端到端语音解码的新颖框架。我们的方法旨在根据脑电信号直接重建所听语音波形,其中不需要中间声学特征处理步骤。所提出的方法由脑电模块、语音模块和连接器组成。脑电模块学习更好地表示脑电信号,而语音模块从模型表示中生成语音波形。连接器学习连接脑电和语音的潜在空间分布。所提出的框架既简单又高效,允许单步推理,并且在客观指标上优于以前的工作。进行了细粒度的音素分析以揭示语音解码的模型特征。源代码可在此处获取:github.com/lee-jhwn/fesde。索引词:语音解码、语音合成、脑电图、神经活动、脑信号
