近来,无人机 (UAV) 作为一个快速发展的领域,吸引了越来越多的科学家和消费者的关注。人们对多旋翼无人机尤其感兴趣,它们因其低速飞行、悬停和垂直起降能力而被认为是用于高质量航空摄影、摄像、监控和其他地形探索的良好飞行平台。所述特性使它们易于在空间有限的条件下使用。显然,这种飞行器的行为是不稳定的,因此需要负责稳定和导航功能的飞行控制系统 (FCS)。此外,FCS 能够提供完全自主飞行的能力。当代电子技术的快速发展使得制造低成本和紧凑型 FCS 成为可能。然而,实施的测量单元的精度不高。多传感器数据融合是提高精度的方法之一。本文介绍了 FCS 开发中需要指导的要求和一般概念,以及飞行测试中获得的结果及其比较。特别关注多传感器数据融合方法,该方法可以提高飞行精度和可靠性。此外,还提供了硬件和软件架构的描述。
持续到 2015 年。除了这份合同,ATK 还为 F-35 制造了其他几种复合材料结构,包括七片式上翼蒙皮、下翼蒙皮、发动机舱蒙皮、进气道和上翼带,采用自动纤维铺放和手工铺放技术。2011 年 9 月,洛克希德·马丁航空公司授予 ATK 生产单段全复合材料上翼蒙皮的合同。根据初始系统开发和演示合同,到 2006 年 10 月将为 22 套飞机提供零部件。在低速率初始生产阶段的后续潜力包括到 2015 年的另外 674 套飞机。ATK Composites 负责新型战斗机所有三种型号的上翼蒙皮的模具设计和制造,产品基于纤维铺放制造工艺。ATK Composites 之前曾为洛克希德马丁公司提供过两个 JSF 演示项目的支持 - 对于概念演示飞机,ATK 提供了两套纤维铺放进气道和上翼蒙皮的代表性部分,以模拟 STOVL 和 CV 型号。
该项目探索了全碳纤维增强聚合物无人机 (UAV) 的商用飞机的经典机翼结构。它是多个研究飞机不同部件的小组合作工作的一部分。本报告的目的是介绍更环保、更高效的 2:1 版 Skywalker X8 内翼结构的设计。为了使飞机尽可能高效,结构需要轻量化。首先使用 XFLR5 近似计算负载,并进行初步设计。然后使用 Ansys Static Structural 程序中的有限元分析 (FEA) 对该设计进行测试。测试的材料是碳纤维/环氧预浸料。机翼的最终设计重 3.815 公斤,由一根翼梁和 1 毫米厚的蒙皮组成。整机重量(包括其他研究小组研制的推进系统和翼尖鲨鳍小翼)为20.262千克,升阻比也经过计算,得出最有效的迎角在2-3°左右。
商标注册处处长已根据《商标条例》(第559章)第42条接受下列商标注册。根据《商标条例》第43条及《商标规则》(第559章,附属法例)第15条,现公布申请的详情。根据《商标条例》第44条及《商标规则》第16条,任何人士如欲反对任何该等商标的注册,须于本公告日期起计的3个月内,以表格T6提交反对通知书。(例如,如公告日期为2003年4月4日,则3个月期间的最后一天为2003年7月3日。)反对通知书须载有反对理由及第16(2)条所提述事项的陈述。反对者在提交反对通知书的同时,须将通知书副本送交有关申请的申请人。商标注册处处长根据《商标条例》(第 43 章)第 13 条/《商标条例》(第 559 章)附表 5 第 10 条接受的注册申请,请参阅电子宪报 http://www.gld.gov.hk/cgi-bin/gld/egazette/index.cgi?lang=e&agree=0 。
2.1 覆盖路径规划. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.3 近似分解. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................................................................................................................21 2.3.2 结构检查....................................................................................................................................................................................25 2.3.3 结论....................................................................................................................................................................................................25 2.3.3 结论....................................................................................................................................................................................................25 27
Calise 和 Preston [1] 开发了一种近似校正制导命令以消除风的影响的方法。分析表明,风对制导回路稳定性的影响相当于在大多数飞行条件下增加制导回路增益,甚至在风速超过飞行器空速时会导致回路增益符号反转。Luders 等人 [2] 提出了一种在线稳健轨迹规划,以在风不确定的情况下执行防撞和精确着陆。显式实时风建模和分类用于预测未来的干扰,采样技术确保有效保持对可能变化的稳健性。其他大多数工作 [3-6] 寻求稳健的翼伞终端制导,以便在各种风干扰下准确和迎风着陆。
摘要:设计并测试了一种用于现场测量动态充气机翼上下表面内外压差的仪器系统,揭示了充气翼型的空气动力学特性的重要见解。风洞试验证明了低压差读数在 1.0–120 Pa 范围内的全部能力,覆盖 3 至 10 m/s 的速度,攻角从 − 20 到 +25 ◦。读数稳定,在运行飞行范围内的变化系数为 2% 至 7%。实验数据证实了底部前缘再循环气泡的出现,与低雷诺数状态和进气口的存在有关。它支持基于局部压力差的空气动力学特性新方法的提议,该方法考虑了受限的气流结构并提供与实际观察相符的升力估计。结果也与之前按照不同策略获得的数据兼容,并被证明可以有效地参数化膨胀和失速现象。总体而言,该仪器可以直接用作飞行测试设备,并且可以进一步转换为崩溃警报和预防系统。
无人驾驶飞行器 (UAV) 是一种飞行机器人,在民用和军用领域均有使用,且使用量呈急剧增长趋势。它们已广泛应用于民用领域,如执法、地球表面测绘和灾害监测,以及军事任务,如监视、侦察和目标捕获。随着对无人驾驶飞行器使用量的需求不断增长,在自主性、飞行能力和有效载荷方面具有更大进步的新型设计正在涌现,可携带更复杂、更智能的传感器。随着这些技术进步,人们将为无人驾驶飞行器找到新的作战领域。本论文主要研究新型无人驾驶飞行器 (SUAVI:萨班哲大学无人驾驶飞行器) 的设计、构造和飞行控制。SUAVI 是一种电动紧凑型四倾翼无人驾驶飞行器,能够像直升机一样垂直起降 (VTOL),并通过倾斜机翼像飞机一样水平飞行。它携带机载摄像机,用于捕捉图像并通过与地面站的射频通信进行广播。在 SUAVI 的气动和机械设计中,考虑了飞行时间、飞行速度、尺寸、电源和要执行的任务。气动设计是通过考虑气动效率的最大化和安全飞行特性来进行的。推进系统中的组件的选择是为了优化推进效率并满足要求
图2 VAD GWAS的曼哈顿图。除了APOE区域的变体外,我们还确定了与VAD相关的五个新的遗传基因座。蓝色和红线分别对应于5e-7和5e-8的P值,分别针对全基因组暗示性和显着SNP。曼哈顿杂交荟萃分析的地块。每个点代表一个SNP,x轴显示每个SNP所在的染色体,Y轴显示了每个SNP与VAD的关联与VAD的cossestry荟萃分析中的 - log10 p值。红色水平线显示了全基因组的显着阈值(p值= 5E-8; - log10 p值= 7.30)。在每个基因座中最接近最重要的SNP的基因已被标记。
要理解当今普遍存在的肥胖问题,我们必须回顾过去,更准确地说,回顾人类新陈代谢的进化史。毕竟,我们的大脑和身体与我们的祖先一样。他们没有在糖湖里游泳,也没有从树上摘巧克力棒;相反,食物往往很少,人们经常挨饿。我们的新陈代谢在几个世纪中适应了这些生活条件。“进化教会了大脑和身体,食物并不总是随时可得。每当食物充足时,我们就会学会填饱肚子,为食物匮乏做好准备,”Tittgemeyer 解释道。例如,即使胃已经饱了,饱腹感信号也可能被激活我们的奖励系统所取代。神经递质多巴胺在这方面起着重要作用。另一个信号系统会估计一顿饭的能量含量,并在你的嘴巴咬下第一口之前为身体做好相应的准备。位于大脑下丘脑的神经细胞被称为“饥饿神经元”,参与了这一过程。 “这些细胞只有在我们吃饱的时候才会稍微活跃起来。但当我们饿的时候,它们就会变得非常活跃,”蒂特格梅尔解释道。