.4 为防止船体结构与有色金属合金制成的船底阀和舷侧阀接触,应在船底阀和舷侧阀的两端安装电绝缘接头,如果管道与船体材料形成电对,则还应在管道本身及其支管上安装电绝缘接头,距离至少为 5 个公称管径。船底阀、舷侧阀和管道阀门应与所有类型的接头(控制、加热、排污等管道)电绝缘,这些接头可能在阀门和船体之间形成金属接触。如果船底阀和舷侧阀设有由相同金属制成的第二个截止阀,则它们应作为整体结构电绝缘;
2 选择指南 ..................................................................20 技术概念 ..................................................................21 Ewellix 滚柱丝杠简介 ..............................................21 基本动态承载能力 Ca ..............................................21 公称疲劳寿命 L10 ..............................................................21 使用寿命 ..............................................................................22 当量动态载荷 Fm ......................................................22 基本静态承载能力 C0a ......................................................22 丝杠轴的临界转速 ncr .............................................23 允许的速度限制 (n d0) 和加速度 .............................................................23 效率 η .............................................................................24 反向驱动和制动扭矩 Tb .............................................................................25 脱离扭矩 Tx .............................................................................25 驱动扭矩 Tt .............................................................................25 静态轴向刚度 Rt .............................................................................25 材料、热处理和涂层 .............................................................26 工作温度 .............................................................................27 丝杠轴屈曲或柱强度 Fc .............................................................27 轴设计 .............................................................
技术说明 风扇箱由一个圆柱形底座组成,叶轮安装在底座内。驱动电机直接用固体隔音材料固定在箱体上。所有用于空气引导的部件均由阻燃聚丙烯制成。下部外壳部分是吸入室,带有三个进气插座,其公称直径为 75 毫米,偏移 90 度。这意味着最多可以将三个吸入点直接连接到风扇上。不使用的插座用盖帽封闭。特殊的轴密封件可防止危险物质的流出。尺寸匹配的减震器和最下层带有封闭盖的孔是标准交付范围的元素。因此,风扇符合 DIN 1946 第 7 节的规定。
为了推进粉末床熔合 (PBF) 和吹粉沉积 (BPD) 等增材制造 (AM) 方法,有必要对这些部件进行特性分析,并了解它们与粉末冶金、铸造和锻造产品等其他工艺的不同之处。AM 进一步扩展到新市场将依赖于各种后处理方法的开发,例如表面处理。为了评估吹粉沉积 (BPD) 中沉积规模的下限,生产了公称 1 毫米薄壁 Inconel 625 样品。本研究评估了各种表面处理方法的效果,例如化学加速振动精加工 (CAVF) 和化学铣削 (CM)。通过对薄壁 Inconel 625 的机械性能和微观结构比较了不同的表面处理方法。本研究发现薄壁 BPD 工艺中的微观结构变化妨碍了对不同表面处理效果的评估。本研究强调需要将得到的微观结构与机械性能联系起来以理解结果。
5 安装在钩形胎圈(HB)轮辋上的“带胎圈边缘”轮胎 ............................................................................................................. 12 5.1 概述 ............................................................................................................................................................................. 12 5.2 轮胎名称 ............................................................................................................................................................. 12 5.2.1 概述 ............................................................................................................................................................. 12 5.2.2 轮胎尺寸名称 ............................................................................................................................................. 13 5.2.3 首选旋转方向 ............................................................................................................................................. 13 5.2.4 示例 ............................................................................................................................................................. 13 5.3 轮胎尺寸 ............................................................................................................................................................. 13 5.3.1 概述 ............................................................................................................................................................. 13 5.3.2 “设计轮胎”尺寸 ............................................................................................................................................. 13 5.3.3 计算使用中轮胎的最大尺寸 ...................................................................................................................... 14 5.3.4 确定公称外径代码 ...................................................................................................................................... 14 5.3.5 数值 ...................................................................................................................................................................... 15 5.4 轮胎尺寸测量方法 ............................................................................................................................................. 15 5.5 可安装在钩形轮辋(HB)和直边轮辋上的轮胎 ............................................................................. 15 5.5.1 轮胎名称 ............................................................................................................................................................. 15 5.5.2 使用中轮胎的最大尺寸 ............................................................................................................................. 15
• 高效高增益间接不锈钢气缸,配有专门设计的线圈,可与 Aerona³ ASHP 高效可靠地配合使用。还提供太阳能线圈选项。 • Grant 预装预接线气缸专为轻松快速安装而设计。气缸预接线用于 3 区系统,并提供更多选项。它预装了电动阀、自动旁路、冷水入口和减压组件。气缸的线圈、绝缘和性能都是最高品质的。 • 集成单元采用时尚设计,允许将单元安装在从杂物间到晾衣柜等多个位置。由 Grant 制造,有助于轻松安装和调试和服务。集成单元具有预装预接线气缸的所有优点,管道连接处于高位。 • Slimline 是一种高效高增益间接不锈钢气缸,公称直径仅为 478 毫米。对于那些空间非常狭窄的安装来说,这是理想的选择。
2 选择指南..................................................................20 技术概念....................................................................21 Ewellix 滚柱丝杠简介...............................................21 基本动态承载能力 Ca........................................21 公称疲劳寿命 L10.........................................................................21 使用寿命....................................................................22 当量动态载荷 Fm.............................................................22 基本静态承载能力 C0a.........................................................22 丝杠轴的临界转速 ncr.........................................................23 允许的速度限制 (n d0) 和加速度.........................................................23 效率 η.............................................................................24 反向驱动和制动扭矩 Tb.............................................................................25 脱离扭矩 Tx.............................................................................25 驱动扭矩 Tt.............................................................................25 静态轴向刚度 Rt.............................................................................25 材料、热处理和涂层.............................................................26 工作温度.............................................................................27 丝杠轴屈曲或柱强度 Fc.............................................................27 轴设计.............................................................................28 产品检验和认证.............................................................29 工作环境.................................................................29 轴向游隙和预紧...............................................................30 轴向游隙和预紧...............................................................30 预紧和刚度...............................................................30 预紧扭矩 Tpr................................................................32 预紧扭矩公差...............................................................32 预紧调整.......................................................................34 导程精度和制造公差....................................................36 导程精度....................................................................36 制造公差....................................................................40 计算公式....................................................................44 计算示例....................................................................47
MIL-DTL-32505 2014 年 11 月 13 日 详细规格 装甲板,铝合金,7017 可焊接和 7020 贴花 本规格经国防部各部门和机构批准使用 1. 范围 1.1 范围。本规格涵盖两种锻造铝装甲板合金,用于焊接和非焊接应用,公称厚度为 0.500 至 4.000 英寸(见 6.2)。锻造铝合金 AA7017 装甲的可焊性仅适用于这些厚度的 I 级装甲:1.000” 和 1.500”。 I 类 (AA7017) 材料可直接替代 MIL-DTL-46063H 修订 2 材料,即 AA7039,用于新设计,如果指定(见 6.2),用于旧设计或维修/更换。在本规范发布之前,尚未确定 II 类装甲的锻造铝合金 AA7020 装甲的验收要求和可焊性。当前测试正在进行中,完成后将修订本规范以包含 II 类 (AA7020) 装甲的所有相关要求和条件。II 类铝合金 AA7020 在本规范中列为占位符,直到上述测试程序完成。表格将填写 AA7020 要求;但是,目前这些值将替换为“TBD”(待定)。1.2 可焊性。本规范涵盖的材料已被证明可焊接到自身和其他可焊合金上(见 6.4)。 1.3 类
15.补充说明由船舶结构委员会赞助。由其成员机构 16 共同资助。摘要 最近的大型铝高速船已经利用定制挤压件有效地建造大型扁平结构,包括内部甲板、湿甲板和侧壳部件。在本报告中,研究了设计和优化此类挤压件以尽量减少结构重量的一般方法。回顾了铝板和面板在平面内和平面外载荷下的强度方法,并将其与公开文献中发表的可用实验测试数据进行了比较。对于铝板和面板的平面内抗压强度,通常发现良好的一致性。然而,目前用于评估板材部件上的平面外载荷以及在组合载荷下作用的板材和面板的最先进的方法并不那么先进。建议在这些领域开展进一步研究。开发了一种使用遗传算法的多目标优化器;该优化器旨在快速生成帕累托边界,将各种强度水平的最小重量设计联系起来。开发了一种工程方法,用于估计平面内和平面外载荷组合下的任意挤压件的强度,并将其链接到优化器以创建完整的设计方法。该方法用于为三种不同类型的挤压面板(板和加强筋组合、夹层面板和帽形加强面板)开发主车辆甲板和公称高速船上强度甲板位置的面板的帕累托边界。最后,提出了结论和未来研究的建议。总体而言,这三种类型的面板在各种强度范围内都表现良好,但在某些应用中,夹层面板比其他两种面板略重。这种工程强度估计方法和多目标遗传算法优化方法的结合已被证明对于此类挤压件的设计非常实用,在标准台式电脑上,完整帕累托前沿的生成时间仅为几分钟。17.关键词 铝、挤压件、屈曲、极限强度、优化、遗传算法。
GO2-24-102 附件 2 第 1 页,共 7 页 救济请求编号 5ISI-04 RPV 泄漏检测管线的替代测试方法 拟议替代方案 符合 10 CFR 50.55a(z)(2) 的困难或异常困难,但不会增加质量和安全水平 1. 受影响的 ASME 规范部件 描述:源自反应堆容器喷嘴 N-17 的反应堆压力容器 (RPV) 头法兰泄漏管线 ASME 规范等级:1 级和 2 级 检查类别:BP(所有压力保持部件)和 CH(所有压力保持部件) 项目编号:B15.20 和 C7.10 受影响的部件:公称管道尺寸 NPS 1” 碳钢(SA-106,Gr B)从 RPV 喷嘴 N17 到主蒸汽阀的泄漏管道和配件(SA-105,Gr II) MS-V-14 和 MS-V-13 和 NPS ¾” (SA-106 Gr B) 分支管道直至阀门 MS-V-764 和 MS-PS-34。 2. 适用规范版本和附录哥伦比亚发电站(哥伦比亚)在役检查 (ISI) 第五间隔美国机械工程师学会 (ASME) 第 XI 节记录规范为 2019 年版。 3. 适用规范要求按照表 IWB-2500-1、检查类别 BP、项目编号 B15.20 进行 1 级压力保持组件的系统泄漏测试。如表 IWB-2500-1、IWB-5220、系统泄漏测试、子段 IWB-5222(b) 所述,当系统阀门处于正常反应堆启动所需的位置时,未加压的 1 级保压边界应在检查间隔结束时或接近结束时加压并检查。表 IWC-2500-1、检查类别 CH、项目编号 C7.10 中 2 级保压组件的系统泄漏测试;如表 IWC-2500-1、IWC-5220、系统泄漏测试、子段 IWC-5221(b) 所述,对于不定期操作的组件,泄漏测试应在为验证系统可操作性而进行的测试中产生的系统压力下进行(例如,