葡萄干剂玻璃的散装和薄膜都是有趣的。已经开始探索用于宽带光生成的芯片非线性工艺的葡萄干剂玻璃。此外,也开始使用缺陷工程来制作多层硫化硫化剂薄膜,以用于低功率相变的记忆应用。(ii)使用快速淬灭技术制备硫元化的玻璃,使他的组能够在玻璃形成区域的扩展区域制备玻璃,从而揭开了许多有趣的特性。(iii)观察硫化剂玻璃杯中玻璃转变的负压系数在理解玻璃过渡的性质方面具有重要意义。(iv)GE-SE-TE玻璃具有高达25微米的红外传输玻璃,也已为空间和防御应用准备。红外传输%也约为75%。(v)GE 2 SB 2 TE 5(GST)直接过渡到与SE掺杂时的稳定六角形相是一个重要的观察结果。这项工作表明,向亚稳态的立方相的过渡不是快速有效的相变非挥发性内存应用的重要方面。直接过渡到稳定的六角形相也可能导致快速变化。(vi)通过用较小的原子SE替换较大的原子TE来研究原子大小对相变特性的影响。(vii)探索用于热电应用的葡萄干剂玻璃和玻璃陶瓷。(viii)他们的组还制备了氮化碳(C 3 N 4),该碳被预测为具有
下一代电子产品不仅需要较小,而且还需要更灵活。为了满足此类需求,已经深入研究了使用二维原子晶体的电子设备。尤其是在多功能研究领域具有前所未有的性能实现的石墨烯会导致2D原子晶体游行。在本演讲中,我将介绍石墨烯对突出的电晶体管实现的电气表征和应用。即使是上升的2D原子晶体,例如六角硼(H-BN),二硫化钼(MOS 2)和用于现场效应晶体管(FET)的有机薄膜,以符合胜任的增强。
公司描述Hexaware Technologies Limited是数字和技术服务的全球提供商,非常重视人工智能(AI)驱动的解决方案。公司将AI集成到其服务产品中,以协助企业进行数字化转型,重点关注自动化,云采用和运营优化。其业务围绕关键服务领域进行结构:设计和构建,安全与运行,数据和AI,优化和云服务。这些服务类别满足了各个行业的不同客户需求。Hexaware在六个主要行业范围内运营:金融服务,医疗保健和保险,制造和消费者,高科技和专业服务,银行业以及旅行和运输。每个细分市场都受益于公司量身定制的解决方案和域专业知识。为了增强其服务交付,Hexaware开发了专有平台,包括Rapidx™,它有助于数字转换,Tensai®,AI驱动的自动化工具,以及云迁移平台Amaze®。该公司拥有全球足迹,在美洲,欧洲和亚太地区(包括印度和中东)提供服务。其国际业务使六角星可以为包括跨国公司和中型企业在内的各种客户服务。此外,其战略伙伴关系有助于扩大服务能力和市场范围。Hexaware在竞争激烈的IT服务行业中运作,面临来自大型全球公司和中型参与者的竞争。因此,我们建议对IPO进行“订阅”评级。行业的合并趋势提出了挑战,因为较大的竞争对手可以提供捆绑的服务并施加定价压力。主要市场,特别是在美洲和欧洲的经济波动,也影响了客户IT预算,可能会影响对六角队服务的需求。此外,货币汇率变化构成了财务风险,因为该公司以多种货币收入,同时产生印度卢比的成本。为了应对这些挑战,六角星将重点放在技术创新,以客户为中心的解决方案和运营效率上。公司优先考虑AI驱动的自动化和云服务,以满足企业不断发展的需求。它还投资于人才发展和战略伙伴关系,以保持其竞争地位。该公司在印度,阿联酋,美国,墨西哥,欧洲和东南亚都有全球交付业务,使该公司能够为其客户提供创新且具有成本效益的解决方案。通过利用人才库以及陆上和海上服务的混合,该公司可以迅速满足不断变化的客户需求。该公司致力于交付卓越,并优先考虑培训AI和生成AI评估和Outlook Hexaware Technologies业务在过去十年中的发展,越来越多的产品,更大,多元化的客户群,更广泛的客户群,更广泛的全球交付以及对创新和技术的更高关注。在高价乐队的公司中,市值为43.1倍,市值为4.3024亿卢比,股票股票的股票回报率为22.8%。其专业知识进一步补充了战略和行业的合作伙伴(例如ServiceNow),为荷兰的银行金融技术公司(Backbase)等各种业务职能提供了AI驱动的解决方案。在估值方面,我们认为该公司的价格相当。
摘要ITOH-TSUJII反转算法在发现诸如椭圆曲线密码学等密码应用中的倒数方面构成了主要贡献。在本文中,提出了一种新的HEX ITOH-TSUJII反转算法来计算由NIST推荐的不可舒服的三通式产生的二进制的二进制式栅极阵列(FPGA)平台上的多重逆逆向算法。基于十六进制算法的六角itoh tsujii反转算法是由十六进制电路和四链链构建的。此组合改善了资源利用率。实验结果表明,与现有实施相比,所提出的工作具有更好的区域时间性能。关键词:现场可编程栅极阵列(FPGA),ITOH-TSUJII反转算法(ITA),查找表(LUT),有限字段(FF)分类:集成电路
抽象目的 - 本文旨在研究六角硼(HBN)纳米颗粒对极高压力(EP)特性的影响,当用作润滑油的添加剂时。设计/方法/方法 - 通过分散0.5卷的最佳组成来制备纳米油。SAE 15W-40柴油发动机油中70 nm HBN的百分比使用超声处理技术。根据ASTM标准,使用四球摩擦仪进行摩擦学测试。发现 - 发现纳米油具有减速在接触表面上的癫痫发作点,可以获得更高的EP。与纳米油润滑相比,在用SAE 15W-40柴油发动机油润滑的球轴承磨损表面上观察到更多的粘合剂磨损。独创性/价值 - 实验研究的结果表明,HBN作为提高润滑油负荷携带能力的添加剂的潜力。
量子发射器需要多种从量子传感到量子计算的应用。六角硼硝酸盐(HBN)量子发射器是迄今为止最有价值的固态平台之一,由于其高亮度,稳定性和自旋光子界面的可能性。但是,对单光子发射器(SPE)的物理起源的理解仍然有限。在这里,我们在整个可见频谱中观察到HBN中的密集SPE,并提供了混凝土和结论性的证据,表明这些SPE中的大多数可以通过供体受体对(DAPS)很好地解释。基于DAP过渡生成机制,我们计算了它们的波长指纹,与实验观察到的光致发光光谱非常匹配。我们的工作是对HBN中SPE的物理理解及其在量子技术中的应用。
我们将外延的概念扩展到了“扭曲外观”的制度,并在两个受相对方向影响的两个底物之间的表层晶体取向。,我们在两个去角质的六角钼二硫化物(MOS 2)的两个底物之间退火纳米厚的金(AU)纳米颗粒,其基础平面的不同方向具有相互扭曲的角度,范围为0°至60°。透射电子显微镜研究表明,当双层的扭曲角度很小(<〜7°)时,AU在顶部和底部MOS 2之间对齐。对于较大的扭曲角,Au只有一个小的不良对象,而底部MOS 2则与双层MOS 2的扭曲角差异大致变化。四维扫描透射电子显微镜分析进一步揭示了与扭曲的外交相关的au纳米虫的周期性应变变化(<|±0.5%|),与两个MOS 2扭曲层的Moiré注册表一致。e
这项工作的目的是对受冲击载荷的六角硼核晶格中的精细结构参数和能量散射通道进行彻底分析。这种外部影响会导致材料中的冲击波形成。已经表明,可以通过在正常的方向上向单个原子行给出初始脉冲来启动冲击波。同时,此类初始条件与稳定的冲击波曲线不符,但在足够短的过渡期约为0.1 ps后形成。已经表明,所研究材料中的冲击波只能在两个晶体学方向(即曲折和扶手椅方向)传播。在所有情况下,冲击波传播的速度比所研究材料中的声音速度快。已经研究了冲击波传播的机制。我们已经揭示了锯齿形方向冲击波的传播与最小的能量损耗有关。我们发现冲击波传播期间材料中能量耗散的主要机制是键长和键角振荡。
在生物传感器技术中使用二维(2D)材料已革命 - 领域。像石墨烯,过渡金属二核苷(MOS 2和WS 2)这样的材料,六角硼(H-BN)和黑磷具有纳米级厚度和不同的物理特性,可能会大大增强生物传感器的性能[1]。石墨烯具有特殊的电导率和机械强度,以其在生物传感器中的多功能性而广泛认可。其平面结构和高电子迁移率提高了敏感性和特定的特定性,使其成为理想的组成部分[2]。过渡金属二分法源(例如MOS 2和WS 2)由于其分层结构而具有独特的半导管特性。这些材料可以与光线和电场相互作用,使其特别适合需要精确的电特性的生物传感器应用[3]。此外,研究增强了2D材料在癌症生物传感器中的作用:一种用于肺癌检测的MOS 2 /CU 2 O传感器[4],PEC生物传感器的食管癌[5]和用于广泛癌细胞检测的实验室芯片设计[6]。